Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. V. 20, N 2. P. 179-184 (2017).
DOI: https://doi.org/10.15407/spqeo20.02.179


References

1.    Tiwari S., Rana F., Hanafi H., Hartstein A., Crabbe E.F., Chan K. A silicon nanocrystals based memory. Appl. Phys. Lett. 1996. 68, No. 10. P. 1377–1379.
https://doi.org/10.1063/1.116085
 
2.    Hanafi H.I., Tiwari S., Khan I. Fast and long retention-time nanocrystal memory. IEEE Trans. Electron. Devices. 1996. 43. P. 1553–1558.
https://doi.org/10.1109/16.535349
 
3.    She M., King T.-J. Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance. IEEE Trans. Electron. Devices. 2003. 50, No. 9. P. 1934–1940.
https://doi.org/10.1109/TED.2003.816525
 
4.    Canham L. Gaining light from silicon. Nature. 2000. 408. P. 411–412.
https://doi.org/10.1038/35044156
 
5.    Ng W.L., Lourenço M.A., Gwilliam R.M., Ledain S., Shao G., and Homewood K.P. An efficient room-temperature silicon-based light-emitting diode. Nature. 2001. 410(6825). P. 192–194.
https://doi.org/10.1038/35065571
 
6.    Pavesi L., Negro L. Dal, Mazzoleni C., Franzò G., Priolo F. Optical gain in silicon nanocrystals. Nature. 2000. 408. P. 440.
https://doi.org/10.1038/35044012
 
7.    Yun F., Hinds B.J., Hatatani S., Oda S., Zhao Q.X., Willander M. Study of structural and optical properties of nanocrystalline silicon embedded in SiO2. Thin Solid Films. 2000. 375. P. 137.
https://doi.org/10.1016/S0040-6090(00)01259-1
 
8.    Koshizaki N., Hiroyuki H., Oyama T. XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films. Thin Solid Films. 1998. 325. P. 130.
https://doi.org/10.1016/S0040-6090(98)00512-4
 
9.    Rinnert H., Vergnat M., Marchal G. Structure and optical properties of amorphous SiOx thin films prepared by co-evaporation of Si and SiO. Mater. Sci. Eng. B. 2000. 484. P. 69–70.
https://doi.org/10.1016/S0921-5107(99)00276-7
 
10.    Bell F.G., Ley L. Photoemission study of SiOx (0 ≤ x ≤ 2) alloys. Phys. Rev. B. 1988. 37. P. 8383.
https://doi.org/10.1103/PhysRevB.37.8383
 
11.    Bratus' O.L., Evtukh A.A., Lytvyn O.S., Voitovych M.V., Yukhymchuk V.O. Structural properties of nanocomposite SiO2(Si) films obtained by ion-plasma sputtering and thermal annealing. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. 14. P. 247–255.
https://doi.org/10.15407/spqeo14.02.247
 
12.    Rochet F., Dufour G., Roulet H., Pelloie B., Perrière J., Fogarassy E., Slaoui A., Froment M. Modification of SiO through room-temperature plasma treatments, rapid thermal annealings, and laser irradiation in a non-oxidizing atmosphere. Phys. Rev. B. 1988. 37. P. 6468.
https://doi.org/10.1103/PhysRevB.37.6468
 
13.    Gallas B., Kao C.-C., Fisson S., Vuye G., Rivory J., Bernard Y., Belouet C. Laser annealing of SiOx thin films. Appl. Surf. Sci. 2002. 185. P. 317–320.
https://doi.org/10.1016/S0169-4332(01)00983-7
 
14.    Janotta A., Dikce Y., Schmidt M., Eisele C., Stutzmann M. Light-induced modification of a-SiOx: Laser crystallization. J. Appl. Phys. 2004. 95. P. 4060–4068.
https://doi.org/10.1063/1.1667008
 
15.    Korchagina T.T., Gutakovsky A.K., Fedina L.I., Neklyudova M.A., Volodin V.A. Crystallization of amorphous Si nanoclusters in SiO films using femtosecond laser pulse annealings. J. Nanosci. Nanotechnol. 2012. 12. P. 8694–8699.
https://doi.org/10.1166/jnn.2012.6805
 
16.    Gavrylyuk O.O., Semchyk O.Yu., Bratus O.L., Evtukh A.A., Steblova O.V., Fedorenko L.L. Study of thermophysical properties of crystalline silicon and silicon-rich silicon oxide layers. Appl. Surf. Sci. 2014. 302. P. 213–215.
https://doi.org/10.1016/j.apsusc.2013.09.171
 
17.    Pavesi L. Routes toward silicon-based laser. Mater. Today. 2005. 8, No. 1. P. 18–25.
https://doi.org/10.1016/S1369-7021(04)00675-3
 
18.    Daniel C., Mucklich F., Liu Z. Periodical micro-nano-structuring of metallic surfaces by interfering laser beams. Appl. Surf. Sci. 2003. 208–209. P. 317–321.
https://doi.org/10.1016/S0169-4332(02)01381-8
 
19.    Medvid A., Fedorenko L. Optical excitation of the surface plasmon-polariton resonance in Zn nanoparticles formed by laser radiation in ZnO crystal. IX Intern. Conf. "Topical Problems of Semiconductor Physics", Truskavets, Ukraine, May 16–20, 2016. P. 113–114.
 
20.    Shimizu A., Kanbara M., Hada M., and Kasuga M. ZnO green light emitting diode. Jpn. J. Appl. Phys. 1978. 17. P. 1435.
https://doi.org/10.1143/JJAP.17.1435
 
21.    Lisovskii I.P., Litovchenko V.G., Lozinskii V.B., Frolov S.I., Flietner H., Fussel W., Schmidt E. IR study of short-range and local order in SiO2 and SiOx films. J. Non-Crystalline Solids. 1995. 187. P. 91–95.
https://doi.org/10.1016/0022-3093(95)00118-2
 
22.    Fedorenko L.L., Bolgov S.S., Malyutenko V.K. Activation of photoconductivity of InSb by laser radiation. Ukr. J. Phys. 1975. 14, N. 12. P. 2041–2044.
 
23.    Voronkov V.P., Gurchenok G.A. Impurity diffusion in semiconductors at laser annealing. Phys. Technol. Semicond. 1990. 24. P. 1831–1834.
 
24.    Medvid' A., Fedorenko L.L., Snitka V. The mechanism of generation of donor centers in p-InSb by laser radiation. Appl. Surf. Sci. 1999. 142. P. 280–285.
https://doi.org/10.1016/S0169-4332(99)00072-0
 
25.    Steblova O.V., Evtukh A.A., Bratus'O.L. et al. Transformation of SiOx films into nanocomposite SiO2(Si) films under thermal and laser annealing. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. 17, No. 3. P. 295–300.
https://doi.org/10.15407/spqeo17.03.295
 
26.    Hubner K. Chemical bond and related properties of SiO2. VII. Structure and electronic properties of the SiOx region of Si-SiO2 interfaces. physica status solidi (a). 1980. 61, No. 2. P. 665–671.
 
27.    Kizjak A.Yu., Evtukh A.A., Steblova O.V., Pedchenko Yu.M. Electron transport through thin SiO2 films containing Si nanoclusters. J. Nano Res. 2016. 39. P. 169–177.
https://doi.org/10.4028/www.scientific.net/JNanoR.39.169