Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017. V. 20, N
2. P. 254-258 (2017). References 1. Sirota N., Osinsky V. Radiation of p-n junction based on solid solution of indium phosphate-gallium arsenide crystals. Trudy Akademii Nauk SSSR, ser. fiz. 1966. 171-172. P. 317–319 (in Russian). 2. Scholes G.D. Quantum-coherent electronic energy transfer: Did nature think of it first? J. Phys. Chem. Lett. 2010. 1, N 1. P. 2–8. https://doi.org/10.1021/jz900062f 3. Osinsky V., Osinsky A., Miller R. AlInGaNAsP alloy for LED and laser applications. LED 50-th Anniversary Symposium. October 24-25, 2012, Urbana-Champaign, Illinois, USA. 4. Osinsky V.I., Malyshev S.A., Masol I.V., Labunov V.A., Lyahova N.N., Gorokh G.G., Blynsky V.I., Diagilev A.V. Accumulation of photocarriers in enestors based on heterogeneous multicomponent III-nitrides. NANO-2016: Materials V Intern. Sci. Conf. Minsk, November 22-25, 2016. 5. Patent of Ukraine N 29568/3Y/16 from 19.12.2016. Energy-accumulating processor for light. 6. Günther L.M. et al. Structure of light-harvesting aggregates in individual chlorosomes. J. Phys. Chem. B. 2016. 120, No. 24. P. 5367–5376. https://doi.org/10.1021/acs.jpcb.6b03718 7. Uwada T. et al. Size-dependent optical properties of grana inside chloroplast of plant cells. J. Phys. Chem. B. 2017. 121, No. 5. P. 915–922. https://doi.org/10.1021/acs.jpcb.6b10204 8. Osinsky V., Masol I., Onachenko M., Sushiy A. Decoherence of III-N low dimensional nanostructures quantum processors. IX Vserossiyskaya konferencia "Nitrides of gallium, indium and aluminum: structures and devices". Moscow, 2013. P. 100–101 (in Russian). 9. Masol I., Osinsky V., Sergeev O. Information Nanotechnology. Kyiv: Macros, 2011. 10. Osinsky V.I., Lyahova N.N., Hlotov V.I., Sukhovyy N.O., Litvin O.S., Deminskyi P.V. Photoluminescence spectrums of GaN/InGaN MQDs on GaN nanoroads. Uchionnye zapiski fizicheskogo fakulteta MGU. 2014. N2. P. 142304, 1–4 (in Russian). 11. Osinsky V.I., Privalov V.I., Tikhonenko O.Ya. Optoelectronic Structures Based on Multicomponent Semiconductors. Minsk: Nauka i tekhnika, 1981. 12. Knill E., Laflamme R., Milburn G.J. A scheme for efficient quantum computation with linear optics. Nature. 2001. 409(6816). P. 46–52. https://doi.org/10.1038/35051009 13. Tu R.-C. et al. Ultra-high-density InGaN quantum dots grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 2004. 43. P. L264. https://doi.org/10.1143/JJAP.43.L264 14. Strekalov D.V., Leuchs G. Nonlinear interactions and non-classical light. Preprint arXiv:1701.01403. 2017. 15. Zhang L. et al. Charge-tunable indium gallium nitride quantum dots. Phys. Rev. B. 2016. 93. No. 8. P. 085301. https://doi.org/10.1103/PhysRevB.93.085301 16. Osinsky V.I., Lyahova N.N., Masol I.V., Grunyanskaya V.P., Deminsky P.V., Sukhoviy N.O., Stonis V.V., Onachenko M. Nanocarbide processes in MOS epitaxy of III-nitride structures. Optical and Quantum Electronics in Computers and Intellectual Technologies. 2012. P.62–72. |