Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 152-159 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.152


References

1. Binnig G., Rohrer H., Gerber C., Weibel E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982. 49. P. 57.
https://doi.org/10.1103/PhysRevLett.49.57
 
2. Binnig G., Quate C.F., Gerber C. Atomic force microscope. Phys.Rev. Lett. 1986. 56. P. 930.
https://doi.org/10.1103/PhysRevLett.56.930
 
3. Marrian C., Dobisz E. High-resolution lithography with a vacuum STM. Ultramicroscopy. 1992. 42. P. 1309–1316.
https://doi.org/10.1016/0304-3991(92)90440-U
 
4. Sohn L., Willett R. Fabrication of nanostructures using atomic force microscope based lithography. Appl. Phys. Lett. 1995. 67. P. 1552–1554.
https://doi.org/10.1063/1.114731
 
5. V. Bouchiat, D. Esteve, Lift-off lithography using an atomic force microscope. Appl. Phys. Lett. 1996. 69. P. 3098–3100.
https://doi.org/10.1063/1.117317
 
6. Lytvyn P., Olikh O., Lytvyn O., Dyachyns'ka O., Prokopenko I. Ultrasonic assisted nanomanipulations with atomic force microscope. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2010. 13. P. 36–42.
 
7. Lytvyn P.M., Efremov A.A., Lytvyn O.S., Prokopenko I.V., Mazur Y.I., Ware M.E., Fologia D., Salamo G.J. Precise Manipulations with asymmetric nano-objects viscoelastically bound to a surface. J. Nano Res. 2016. 39. P. 256.
https://doi.org/10.4028/www.scientific.net/JNanoR.39.256
 
8. O'Connell C., Higgins M.J., Moulton S.E., Wallace G.G. Nano-bioelectronics via dip-pen nanolithography. J. Mater. Chem. C. 2015. 3. P. 6431–6444.
https://doi.org/10.1039/C5TC00186B
 
9. Liu H., Hoeppener S., Schubert U.S. Nanoscale materials patterning by local electrochemical lithography. Adv. Eng. Mater. 2016. 18. P. 890–902.
https://doi.org/10.1002/adem.201500486
 
10. Gottlieb S., Lorenzoni M., Evangelio L., Fernández-Regúlez M., Ryu Y., Rawlings C., Spieser M., Knoll A., Perez-Murano F. Corrigendum: Thermal scanning probe lithography for the directed self-assembly of block copolymers. Nanotechnology. 2017. 28. 175301). Nanotechnology. 2017. 28. 289501.
https://doi.org/10.1088/1361-6528/aa73a7
 
11. Dago A.I., Ryu Y.K., Garcia R. Sub-20 nm patterning of thin layer WSe2 by scanning probe lithography. Appl. Phys. Lett. 2016. 109. P. 163103.
https://doi.org/10.1063/1.4965840
 
12. Ryu Y.K., Garcia R. Advanced oxidation scanning probe lithography. Nanotechnology. 2017. 28. P. 142003.
https://doi.org/10.1088/1361-6528/aa5651
 
13. Albisetti E., Petti D., Pancaldi M., Madami M., Tacchi S., Curtis J., King W., Papp A., Csaba G., Porod W. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nature Nanotechnology. 2016. 11. P. 545.
https://doi.org/10.1038/nnano.2016.25
 
14. Soh H.T., Guarini K.W., Quate C.F. Scanning Probe Lithography. Springer Science & Business Media, 2013.
 
15. Garcia R., Knoll A.W., Riedo E. Advanced scanning probe lithography. Nature Nanotechnology. 2014. 9. P. 577.
https://doi.org/10.1038/nnano.2014.157
 
16. Liu X., Chen K.S., Wells S.A., Balla I., Zhu J., Wood J.D., Hersam M.C. Scanning probe nanopatterning and layer-by-layer thinning of black phosphorus. Adv. Mater. 2017. 29, No 1. #1604121.
 
17. Vasić B., Kratzer M., Matković A., Nevosad A., Ralević U., Jovanović D., Ganser C., Teichert C., Gajić R. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology. 2012. 24. P. 015303.
https://doi.org/10.1088/0957-4484/24/1/015303
 
18. Lee W.-K., Tsoi S., Whitener K.E., Stine R., Robinson J.T., Tobin J.S., Weerasinghe A., Sheehan P.E., Lyuksyutov S.F. Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res. 2013. 6. P. 767–774.
https://doi.org/10.1007/s12274-013-0355-1
 
19. Wei Z., Wang D., Kim S., Kim S.-Y., Hu Y., Yakes M.K., Laracuente A.R., Dai Z., Marder S.R., Berger C. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science. 2010. 328. P. 1373–1376.
https://doi.org/10.1126/science.1188119
 
20. Zhao J., Swartz L.A., Lin W.-F., Schlenoff P.S., Frommer J., Schlenoff J.B., Liu G.-Y. Three-dimensional nanoprinting via scanning probe lithography-delivered layer-by-layer deposition. ACS Nano. 2016. 10. P. 5656–5662.
https://doi.org/10.1021/acsnano.6b01145
 
21. Liu X., Carbonell C., Braunschweig A.B. Towards scanning probe lithography-based 4D nanoprinting by advancing surface chemistry, nanopatterning strategies, and characterization protocols. Chem. Soc. Rev. 2016. 45. P. 6289–6310.
https://doi.org/10.1039/C6CS00349D
 
22. Lytvyn P., Lytvyn O., Dyachyns'ka O., Grytsenko K., Schrader S., Prokopenko I. Mechanical scanning probe nanolithography: Modeling and application. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. 15. P. 321–327.
https://doi.org/10.15407/spqeo15.04.321
 
23. Lee C.W., Min B.J., Kim S.I., Jeong H.K. Stacking of water molecules in hydrophilic graphene oxides characterized by Kelvin probe force microscopy. Carbon. 2013. 54. P. 353–358.
https://doi.org/10.1016/j.carbon.2012.11.047
 
24. Prezioso S., Perrozzi F., Giancaterini L., Cantalini C., Treossi E., Palermo V., Nardone M., Santucci S., Ottaviano L. Graphene oxide as a practical solution to high sensitivity gas sensing. J. Phys. Chem. C. 2013. 117. P. 10683–10690.
https://doi.org/10.1021/jp3085759
 
25. Trunov M., Lytvyn P., Dyachyns'ka O. Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films. Appl. Phys. Lett. 2010. 97. P. 031905.
https://doi.org/10.1063/1.3467046
 
26. Trunov M., Cserhati C., Lytvyn P., Kaganovskii Y., Kökényesi S. Electron beam-induced mass transport in As–Se thin films: compositional dependence and glass network topological effects. J. Phys. D: Appl. Phys. 2013. 46. P. 245303.
https://doi.org/10.1088/0022-3727/46/24/245303
 
27. Trunov M., Lytvyn P., Nagy P., Csik A., Rubish V., Kökényesi S. Light-induced mass transport in amorphous chalcogenides: Toward surface plasmon-assisted nanolithography and near-field nanoimaging. phys. status solidi (b). 2014. 251. P. 1354–1362.
 
28. Dan'ko V., Dmitruk M., Indutnyi I., Mamykin S., Myn'ko V., Shepeliavyi P., Lukaniuk M., Lytvyn P. Au gratings fabricated by interference lithography for experimental study of localized and propagating surface plasmons. Nanoscale Res. Lett. 2017. 12.P. 190.
https://doi.org/10.1186/s11671-017-1965-4
 
29. Fitzgerald C., Fukunaga L. NanoLithography Support Note 316, 2001.
 
30. TESP AFM tips, Bruker.
 
31. Hummers W.S. Jr, Offeman R.E. Preparation of graphitic oxide. J. Amer. Chem. Soc. 1958. 80. P. 1339–1339.
https://doi.org/10.1021/ja01539a017
 
32. Chen J., Yao B., Li C., Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013. 64. P. 225–229.
https://doi.org/10.1016/j.carbon.2013.07.055
 
33. Dan'ko V., Indutnyi I., Min'ko V., Shepelyavyi P. Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectronics, Instrumentation and Data Processing. 2010. 46. P. 483–490.
https://doi.org/10.3103/S8756699011050116
 
34. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004. 19. P. 3–20.
https://doi.org/10.1557/jmr.2004.19.1.3
 
35. Clifford C.A., Seah M.P. Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Applied Surf. Sci. 2005. 252. P. 1915–1933.
https://doi.org/10.1016/j.apsusc.2005.08.090
 
36. Atanassova E., Lytvyn P., Dub S., Konakova R., Mitin V., Spassov D. Nanomechanical properties of pure and doped Ta2O5 and the effect of microwave irradiation. J. Phys. D: Appl. Phys. 2012. 45. P. 475304.
https://doi.org/10.1088/0022-3727/45/47/475304
 
37. Trunov M., Dub S., Shmegera R. Photo-induced transition from elastic to plastic behavior in amorphous As-Se films studied by nanoindentation. J. Optoelectron. Adv. Mater. 2005. 7. P. 619–624.
 
38. Suk J.W., Piner R.D., An J., Ruoff R.S. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010. 4. P. 6557–6564.
https://doi.org/10.1021/nn101781v