4.
Sohn L., Willett R. Fabrication of nanostructures using atomic force
microscope based lithography. Appl. Phys. Lett. 1995. 67. P. 1552–1554. https://doi.org/10.1063/1.114731
5. V. Bouchiat, D. Esteve, Lift-off lithography using an atomic force microscope. Appl. Phys. Lett. 1996. 69. P. 3098–3100. https://doi.org/10.1063/1.117317
6.
Lytvyn P., Olikh O., Lytvyn O., Dyachyns'ka O., Prokopenko I.
Ultrasonic assisted nanomanipulations with atomic force microscope.
Semiconductor Physics, Quantum Electronics & Optoelectronics. 2010.
13. P. 36–42.
7. Lytvyn P.M., Efremov A.A., Lytvyn O.S.,
Prokopenko I.V., Mazur Y.I., Ware M.E., Fologia D., Salamo G.J. Precise
Manipulations with asymmetric nano-objects viscoelastically bound to a
surface. J. Nano Res. 2016. 39. P. 256. https://doi.org/10.4028/www.scientific.net/JNanoR.39.256
8.
O'Connell C., Higgins M.J., Moulton S.E., Wallace G.G.
Nano-bioelectronics via dip-pen nanolithography. J. Mater. Chem. C.
2015. 3. P. 6431–6444. https://doi.org/10.1039/C5TC00186B
9.
Liu H., Hoeppener S., Schubert U.S. Nanoscale materials patterning by
local electrochemical lithography. Adv. Eng. Mater. 2016. 18. P.
890–902. https://doi.org/10.1002/adem.201500486
10.
Gottlieb S., Lorenzoni M., Evangelio L., Fernández-Regúlez M., Ryu Y.,
Rawlings C., Spieser M., Knoll A., Perez-Murano F. Corrigendum: Thermal
scanning probe lithography for the directed self-assembly of block
copolymers. Nanotechnology. 2017. 28. 175301). Nanotechnology. 2017.
28. 289501. https://doi.org/10.1088/1361-6528/aa73a7
11.
Dago A.I., Ryu Y.K., Garcia R. Sub-20 nm patterning of thin layer WSe2
by scanning probe lithography. Appl. Phys. Lett. 2016. 109. P. 163103. https://doi.org/10.1063/1.4965840
13.
Albisetti E., Petti D., Pancaldi M., Madami M., Tacchi S., Curtis J.,
King W., Papp A., Csaba G., Porod W. Nanopatterning reconfigurable
magnetic landscapes via thermally assisted scanning probe lithography.
Nature Nanotechnology. 2016. 11. P. 545. https://doi.org/10.1038/nnano.2016.25
16.
Liu X., Chen K.S., Wells S.A., Balla I., Zhu J., Wood J.D., Hersam M.C.
Scanning probe nanopatterning and layer-by-layer thinning of black
phosphorus. Adv. Mater. 2017. 29, No 1. #1604121.
17.
Vasić B., Kratzer M., Matković A., Nevosad A., Ralević U., Jovanović
D., Ganser C., Teichert C., Gajić R. Atomic force microscopy based
manipulation of graphene using dynamic plowing lithography.
Nanotechnology. 2012. 24. P. 015303. https://doi.org/10.1088/0957-4484/24/1/015303
18.
Lee W.-K., Tsoi S., Whitener K.E., Stine R., Robinson J.T., Tobin J.S.,
Weerasinghe A., Sheehan P.E., Lyuksyutov S.F. Robust reduction of
graphene fluoride using an electrostatically biased scanning probe.
Nano Res. 2013. 6. P. 767–774. https://doi.org/10.1007/s12274-013-0355-1
19.
Wei Z., Wang D., Kim S., Kim S.-Y., Hu Y., Yakes M.K., Laracuente A.R.,
Dai Z., Marder S.R., Berger C. Nanoscale tunable reduction of graphene
oxide for graphene electronics. Science. 2010. 328. P. 1373–1376. https://doi.org/10.1126/science.1188119
20.
Zhao J., Swartz L.A., Lin W.-F., Schlenoff P.S., Frommer J., Schlenoff
J.B., Liu G.-Y. Three-dimensional nanoprinting via scanning probe
lithography-delivered layer-by-layer deposition. ACS Nano. 2016. 10. P.
5656–5662. https://doi.org/10.1021/acsnano.6b01145
21.
Liu X., Carbonell C., Braunschweig A.B. Towards scanning probe
lithography-based 4D nanoprinting by advancing surface chemistry,
nanopatterning strategies, and characterization protocols. Chem. Soc.
Rev. 2016. 45. P. 6289–6310. https://doi.org/10.1039/C6CS00349D
22.
Lytvyn P., Lytvyn O., Dyachyns'ka O., Grytsenko K., Schrader S.,
Prokopenko I. Mechanical scanning probe nanolithography: Modeling and
application. Semiconductor Physics, Quantum Electronics &
Optoelectronics. 2012. 15. P. 321–327. https://doi.org/10.15407/spqeo15.04.321
23.
Lee C.W., Min B.J., Kim S.I., Jeong H.K. Stacking of water molecules in
hydrophilic graphene oxides characterized by Kelvin probe force
microscopy. Carbon. 2013. 54. P. 353–358. https://doi.org/10.1016/j.carbon.2012.11.047
24.
Prezioso S., Perrozzi F., Giancaterini L., Cantalini C., Treossi E.,
Palermo V., Nardone M., Santucci S., Ottaviano L. Graphene oxide as a
practical solution to high sensitivity gas sensing. J. Phys. Chem. C.
2013. 117. P. 10683–10690. https://doi.org/10.1021/jp3085759
25.
Trunov M., Lytvyn P., Dyachyns'ka O. Alternating matter motion in
photoinduced mass transport driven and enhanced by light polarization
in amorphous chalcogenide films. Appl. Phys. Lett. 2010. 97. P. 031905. https://doi.org/10.1063/1.3467046
26.
Trunov M., Cserhati C., Lytvyn P., Kaganovskii Y., Kökényesi S.
Electron beam-induced mass transport in As–Se thin films: compositional
dependence and glass network topological effects. J. Phys. D: Appl.
Phys. 2013. 46. P. 245303. https://doi.org/10.1088/0022-3727/46/24/245303
27.
Trunov M., Lytvyn P., Nagy P., Csik A., Rubish V., Kökényesi S.
Light-induced mass transport in amorphous chalcogenides: Toward surface
plasmon-assisted nanolithography and near-field nanoimaging. phys.
status solidi (b). 2014. 251. P. 1354–1362.
28. Dan'ko V.,
Dmitruk M., Indutnyi I., Mamykin S., Myn'ko V., Shepeliavyi P.,
Lukaniuk M., Lytvyn P. Au gratings fabricated by interference
lithography for experimental study of localized and propagating surface
plasmons. Nanoscale Res. Lett. 2017. 12.P. 190. https://doi.org/10.1186/s11671-017-1965-4
29. Fitzgerald C., Fukunaga L. NanoLithography Support Note 316, 2001.
30. TESP AFM tips, Bruker.
31. Hummers W.S. Jr, Offeman R.E. Preparation of graphitic oxide. J. Amer. Chem. Soc. 1958. 80. P. 1339–1339. https://doi.org/10.1021/ja01539a017
32.
Chen J., Yao B., Li C., Shi G. An improved Hummers method for
eco-friendly synthesis of graphene oxide. Carbon. 2013. 64. P. 225–229. https://doi.org/10.1016/j.carbon.2013.07.055
33.
Dan'ko V., Indutnyi I., Min'ko V., Shepelyavyi P. Interference
photolithography with the use of resists on the basis of chalcogenide
glassy semiconductors. Optoelectronics, Instrumentation and Data
Processing. 2010. 46. P. 483–490. https://doi.org/10.3103/S8756699011050116
34.
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by
instrumented indentation: Advances in understanding and refinements to
methodology. J. Mater. Res. 2004. 19. P. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3
35.
Clifford C.A., Seah M.P. Quantification issues in the identification of
nanoscale regions of homopolymers using modulus measurement via AFM
nanoindentation. Applied Surf. Sci. 2005. 252. P. 1915–1933. https://doi.org/10.1016/j.apsusc.2005.08.090
36.
Atanassova E., Lytvyn P., Dub S., Konakova R., Mitin V., Spassov D.
Nanomechanical properties of pure and doped Ta2O5 and the effect of
microwave irradiation. J. Phys. D: Appl. Phys. 2012. 45. P. 475304. https://doi.org/10.1088/0022-3727/45/47/475304
37.
Trunov M., Dub S., Shmegera R. Photo-induced transition from elastic to
plastic behavior in amorphous As-Se films studied by nanoindentation.
J. Optoelectron. Adv. Mater. 2005. 7. P. 619–624.
38. Suk J.W., Piner R.D., An J., Ruoff R.S. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010. 4. P. 6557–6564. https://doi.org/10.1021/nn101781v