1. Popescu M.A. Non-crystalline Chalcogenides. Springer, Berlin, 2002.
2.
Pradel A., Kuwata N., Ribes M. Ion transport and structure in
chalcogenide glasses. J. Phys.: Condens. Matter. 2003. 15. P. 15611571. https://doi.org/10.1088/0953-8984/15/16/306
3.
Belford R.E., Hajto E., Owen A.E. The selective removal of the negative
high-resolution photoresist system Ag-As-S. Thin solid films. 1989.
173. P. 129137. https://doi.org/10.1016/0040-6090(89)90544-0
4.
Kozicki M.N., Mitkova M. Mass transport in chalcogenide electrolyte
films materials and applications. J. Non-Cryst. Solids. 2006. 352. P.
567577. https://doi.org/10.1016/j.jnoncrysol.2005.11.065
5.
Studenyak I., Neimet Yu., Cserhati C., Kökényesi S., Kazakevičius E.,
Šalkus T., Kežionis A., Orliukas A. Structural and electrical
investigations of (Ag3AsS3)x(As2S3)1-x superionic glasses. Cent. Eur.
J. Phys. 2012. 10. P. 206209. https://doi.org/10.2478/s11534-011-0084-6
6.
Studenyak I.P., Neimet Yu.Yu., Kranjčec M., Solomon A.M., Orliukas
A.F., Kežionis A., Kazakevičius E., Šalkus T. Electrical conductivity
studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites. J.
Appl. Phys. 2014. 115. P. 033702-1−033702-5. https://doi.org/10.1063/1.4861624
7.
Studenyak I.P., Kranjčec M., Neimet Yu.Yu., Pop M.M. Optical absorption
edge in (Ag3AsS3)x(As2S3)1-x superionic glasses. Semiconductor Physics,
Quantum Electronics & Optoelectronics. 2012. 15. P. 147151. https://doi.org/10.15407/spqeo15.02.147
8.
Studenyak I.P., Neimet Yu.Yu., Rati Y.Y., Stanko D., Kranjčec M.,
Kökényesi S., Daróci L., Bohdan R. Structural and optical properties of
annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films. Opt. Mat.
2014. 37. P. 718723. https://doi.org/10.1016/j.optmat.2014.08.019
9.
Studenyak I.P., Kutsyk M.M., Rati Y.Y., Izai V.Yu., Kökényesi S.,
Daróci L., Bohdan R. Temperature studies of optical parameters in
(Ag3AsS3)0.6(As2S3)0.4 thin films. Semiconductor Physics, Quantum
Electronics & Optoelectronics. 2015. 18. P. 188192. https://doi.org/10.15407/spqeo18.02.188
10.
Studenyak I.P., Kutsyk M.M., Buchuk M.Yu., Rati Y.Y., Neimet Yu.Yu.,
Izai V.Yu., Kökényesi S., Nemec P. Temperature studies of optical
parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid
thermal evaporation and pulse laser deposition. Opt. Mat. 2016. 52. P.
224229. https://doi.org/10.1016/j.optmat.2015.12.030
11.
Studenyak I.P., Kranjčec M., Kutsyk M.M., Pal Yu.O., Neimet Yu.Yu.,
Izai V.Yu., Makauz I.I., Cserhati C., Kökényesi S. Compositional
studies of optical parameters in (Ag3AsS3)x(As2S3)1-x (x = 0.3; 0.6;
0.9) thin films. Semiconductor Physics, Quantum Electronics &
Optoelectronics. 2016. 19. P. 371376. https://doi.org/10.15407/spqeo19.04.371
12.
Neimet Yu.Yu., Studenyak I.P., Buchuk M.Yu., Bohdan R., Kökényesi S.,
Daróci L., Nemec P. Photo-induced effects in (Ag3AsS3)0.6(As2S3)0.4
thin films and multilayers with gold nanoparticles. Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2015. 18, No 4. P.
385390. https://doi.org/10.15407/spqeo18.04.385
13. Girlani S.A., Yan B., Taylor P.C. Doping in metal chalcogenide glasses. Semiconductors. 1998. 32, No 8. P. 879883. https://doi.org/10.1134/1.1187476
14.
Cali C., Foix D., Taillades G., Siebert E., Gonbeau D., Pradel A.,
Ribes M. Copper (II) selective electrode based on chalcogenide
materials: study of the membrane/solution interface with
electrochemical impedance spectroscopy and X-ray photoelectron
spectroscopy. Mat. Sci. Eng. C. 2002. 21. P. 38. https://doi.org/10.1016/S0928-4931(02)00053-X
15.
Sopinskyy M.V., Kostyshin M.T. Features of physicochemical interaction
in thin-film system on the base of arsenic trisulphide and copper. J.
Optoelectron. and Adv. Mater. 2001. 3, No 2. P. 411420.
16.
Strbac D.D., Lukic S.R., Petrovic D.M., GonzalezLeal J.M., Srinivasan
A. Single oscillator energy and dispersion energy of uniform thin
chalcogenide films from CuAsSSe system. J. Non-Cryst. Solids. 2007.
353. P. 14661469. https://doi.org/10.1016/j.jnoncrysol.2006.10.074
17.
Ubale A.U., Mitkari V.N., Choudhari D.M., Kantale J.S. Synthesis of
nanostructured Cu:As2S3 thin films by chemical bath deposition method
and their physical properties. Int. J. Mat. Chem. 2013. 3. P. 3338.
18.
Swanepoel R. Determination of the thickness and optical constants of
amorphous silicon. J. Phys. E: Sci. Instrum. 1983. 16. P. 12141222. https://doi.org/10.1088/0022-3735/16/12/023
19.
Urbach F. The long-wavelength edge of photographic sensitivity and of
the electronic absorption of solids. Phys. Rev. 1953. 92. P. 13241326. https://doi.org/10.1103/PhysRev.92.1324
21. Kurik M.V. Urbach rule (Review). phys. status solidi (a). 1971. 8. P. 930.
22.
Beaudoin M., DeVries A.J.G., Johnson S.R., Laman H., Tiedje T. Optical
absorption edge of semiinsulating GaAs and InP at high temperatures.
Appl. Phys. Lett. 1997. 70. P. 35403542. https://doi.org/10.1063/1.119226
23.
Yang Z., Homewood K.P., Finney M.S., Harry M.A., Reeson K.J. Optical
absorption study of ion beam synthesized polycrystalline semiconducting
FeSi2. J. Appl. Phys. 1995. 78. P. 19581963. https://doi.org/10.1063/1.360167
24.
Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y., Disorder and
the optical-absorption edge of hydrogenated amorphous silicon. Phys.
Rev. Lett. 1981. 47. P. 14801483. https://doi.org/10.1103/PhysRevLett.47.1480