Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 167-172 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.167


References

1. Popescu M.A. Non-crystalline Chalcogenides. Springer, Berlin, 2002.
 
2. Pradel A., Kuwata N., Ribes M. Ion transport and structure in chalcogenide glasses. J. Phys.: Condens. Matter. 2003. 15. P. 1561–1571.
https://doi.org/10.1088/0953-8984/15/16/306
 
3. Belford R.E., Hajto E., Owen A.E. The selective removal of the negative high-resolution photoresist system Ag-As-S. Thin solid films. 1989. 173. P. 129–137.
https://doi.org/10.1016/0040-6090(89)90544-0
 
4. Kozicki M.N., Mitkova M. Mass transport in chalcogenide electrolyte films – materials and applications. J. Non-Cryst. Solids. 2006. 352. P. 567–577.
https://doi.org/10.1016/j.jnoncrysol.2005.11.065
 
5. Studenyak I., Neimet Yu., Cserhati C., Kökényesi S., Kazakevičius E., Šalkus T., Kežionis A., Orliukas A. Structural and electrical investigations of (Ag3AsS3)x(As2S3)1-x superionic glasses. Cent. Eur. J. Phys. 2012. 10. P. 206–209.
https://doi.org/10.2478/s11534-011-0084-6
 
6. Studenyak I.P., Neimet Yu.Yu., Kranjčec M., Solomon A.M., Orliukas A.F., Kežionis A., Kazakevičius E., Šalkus T. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites. J. Appl. Phys. 2014. 115. P. 033702-1−033702-5.
https://doi.org/10.1063/1.4861624
 
7. Studenyak I.P., Kranjčec M., Neimet Yu.Yu., Pop M.M. Optical absorption edge in (Ag3AsS3)x(As2S3)1-x superionic glasses. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. 15. P. 147–151.
https://doi.org/10.15407/spqeo15.02.147
 
8. Studenyak I.P., Neimet Yu.Yu., Rati Y.Y., Stanko D., Kranjčec M., Kökényesi S., Daróci L., Bohdan R. Structural and optical properties of annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films. Opt. Mat. 2014. 37. P. 718–723.
https://doi.org/10.1016/j.optmat.2014.08.019
 
9. Studenyak I.P., Kutsyk M.M., Rati Y.Y., Izai V.Yu., Kökényesi S., Daróci L., Bohdan R. Temperature studies of optical parameters in (Ag3AsS3)0.6(As2S3)0.4 thin films. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. 18. P. 188–192.
https://doi.org/10.15407/spqeo18.02.188
 
10. Studenyak I.P., Kutsyk M.M., Buchuk M.Yu., Rati Y.Y., Neimet Yu.Yu., Izai V.Yu., Kökényesi S., Nemec P. Temperature studies of optical parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid thermal evaporation and pulse laser deposition. Opt. Mat. 2016. 52. P. 224–229.
https://doi.org/10.1016/j.optmat.2015.12.030
 
11. Studenyak I.P., Kranjčec M., Kutsyk M.M., Pal Yu.O., Neimet Yu.Yu., Izai V.Yu., Makauz I.I., Cserhati C., Kökényesi S. Compositional studies of optical parameters in (Ag3AsS3)x(As2S3)1-x (x = 0.3; 0.6; 0.9) thin films. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19. P. 371–376.
https://doi.org/10.15407/spqeo19.04.371
 
12. Neimet Yu.Yu., Studenyak I.P., Buchuk M.Yu., Bohdan R., Kökényesi S., Daróci L., Nemec P. Photo-induced effects in (Ag3AsS3)0.6(As2S3)0.4 thin films and multilayers with gold nanoparticles. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. 18, No 4. P. 385–390.
https://doi.org/10.15407/spqeo18.04.385
 
13. Girlani S.A., Yan B., Taylor P.C. Doping in metal chalcogenide glasses. Semiconductors. 1998. 32, No 8. P. 879–883.
https://doi.org/10.1134/1.1187476
 
14. Cali C., Foix D., Taillades G., Siebert E., Gonbeau D., Pradel A., Ribes M. Copper (II) selective electrode based on chalcogenide materials: study of the membrane/solution interface with electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Mat. Sci. Eng. C. 2002. 21. P. 3–8.
https://doi.org/10.1016/S0928-4931(02)00053-X
 
15. Sopinskyy M.V., Kostyshin M.T. Features of physicochemical interaction in thin-film system on the base of arsenic trisulphide and copper. J. Optoelectron. and Adv. Mater. 2001. 3, No 2. P. 411–420.
 
16. Strbac D.D., Lukic S.R., Petrovic D.M., GonzalezLeal J.M., Srinivasan A. Single oscillator energy and dispersion energy of uniform thin chalcogenide films from Cu–As–S–Se system. J. Non-Cryst. Solids. 2007. 353. P. 1466–1469.
https://doi.org/10.1016/j.jnoncrysol.2006.10.074
 
17. Ubale A.U., Mitkari V.N., Choudhari D.M., Kantale J.S. Synthesis of nanostructured Cu:As2S3 thin films by chemical bath deposition method and their physical properties. Int. J. Mat. Chem. 2013. 3. P. 33–38.
 
18. Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 1983. 16. P. 1214–1222.
https://doi.org/10.1088/0022-3735/16/12/023
 
19. Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953. 92. P. 1324–1326.
https://doi.org/10.1103/PhysRev.92.1324
 
20. Sumi H., Sumi A. The Urbach–Martienssen rule revisited. J. Phys. Soc. Jpn. 1987. 56. P. 2211–2220.
https://doi.org/10.1143/JPSJ.56.2211
 
21. Kurik M.V. Urbach rule (Review). phys. status solidi (a). 1971. 8. P. 9–30.
 
22. Beaudoin M., DeVries A.J.G., Johnson S.R., Laman H., Tiedje T. Optical absorption edge of semiinsulating GaAs and InP at high temperatures. Appl. Phys. Lett. 1997. 70. P. 3540–3542.
https://doi.org/10.1063/1.119226
 
23. Yang Z., Homewood K.P., Finney M.S., Harry M.A., Reeson K.J. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 1995. 78. P. 1958–1963.
https://doi.org/10.1063/1.360167
 
24. Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y., Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 1981. 47. P. 1480–1483.
https://doi.org/10.1103/PhysRevLett.47.1480