Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 193-200 (2019).
DOI:
https://doi.org/10.15407/spqeo22.02.193
References
1. Read Jr W.T. A proposed high-frequency, negative-resistance diode. Bell System Technical Journal. 1958. 37, No. 2, P. 401-446. https://doi.org/10.1002/j.1538-7305.1958.tb01527.x https://doi.org/10.1002/j.1538-7305.1958.tb01527.x | | 2. Sze S.M, Ng Kwok K. Physics of Semiconductor Devices. John Wiley & Sons, Inc. 2006. https://doi.org/10.1002/0470068329 | | 3. Slipokurov V.S. Results of studying the electrical and physical characteristics of silicon avalanche transit-time diodes. Vishyk Zhytomyr. Derzh. Tekn. Univ., Ser.: Tekhn. Nauky. 2014. 1, No 68. P. 97-101 (in Ukrainian). | | 4. Acharyya A., Banerjee S., Banerjee J.P. Dependence of DC and small-signal properties of double drift region silicon IMPATT device on junction temperature. Journal of Electron Devices. 2012. 12, P. 725-729. | | 5. Belyaev A.E., Basanets V.V., Boltovets N.S. et al. Effect of p-n junction overheating on degradation of silicon high-power pulsed IMPATT diodes. Semiconductors. 2011. 45, No. 2. P. 253-259. https://doi.org/10.1134/S1063782611020047. https://doi.org/10.1134/S1063782611020047 | | 6. Acharyya A., Banerjee S., Banerjee J.P. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. Journal of Semiconductors. 2013. 34, No. 2. P. 024001. DOI:10.1088/1674-4926/34/2/024001. https://doi.org/10.1088/1674-4926/34/2/024001 | | 7. Tashilov A.S. Multi-mesa avalanche transit-time diodes of millimeter-wave range with an increased level of microwave output power. Thesis, candidate of engineering sciences. Nal'chik, 2006 (in Russian). | | 8. Acharyya A., Chakraborty J., Das Datta K.S., De P., Banerjee S., Banerjee J.P. Large-signal charac-terization of DDR silicon IMPATTs operating up to 0.5 THz. Intern. Journal of Microwave and Wireless Technologies. 2013. 5, No. 5. P. 567-578. https://doi.org/10.1017/S1759078713000597. https://doi.org/10.1017/S1759078713000597 | | 9. Gewartowski J.W. The effect of series resistance on avalanche diode (IMPATT) oscillator efficiency. Proc. IEEE. 1968. 56, No. 6. P. 1139-1140. DOI: 10.1109/PROC.1968.6503. https://doi.org/10.1109/PROC.1968.6503 | | 10. Misawa T. Negative resistance in p-n junctions under avalanche breakdown conditions, part I. IEEE Transactions on Electron Devices. 1966. 1. P. 137-143. DOI: 10.1109/T-ED.1966.15647. https://doi.org/10.1109/T-ED.1966.15647 | | 11. Acharyya A., Banerjee J.P. Numerical modeling of series resistance of millimeter-wave DDR IMPATTs. International Journal of Electronics and Electrical Engineering. 2012. 2. P. 9-18. | | 12. Brillson L.J. Contacts to Semiconductors. Fundamentals and Technology. 1993. | | 13. Belyaev A.E., Boltovets M.S., Kapitanchuk L.M. et al. Ohmic contacts Au-Ti-n+-Si and Au-Ti-Pd2Si-n+-Si to silicon microwave diodes. Technics and Microwave Devices. 2009. 2. P. 31-34 (in Russian). | | 14. Basanets V.V., Slipokurov V.S., Shynkarenko V.V., Kudryk R.Ya., Kudryk Ya.Ya. Investigation of specific resistance of Ohmic contacts Au-Ti-Pd-n-Si for avalanche transit-time diodes. Tekhnologia konstruirovanie v elektronnoi apparature. 2015. 1. P. 33-37 (in Russian). | | 15. Romanets P.M., Belyaev A.E., Sachenko А.V. et al. Theoretical and experimental modelling the specific resistance of vertical ohmic contacts Au-Ti-Pd-n+-n-n+-Si in IMPATT diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19, No. 4. P. 366-370. doi: https://doi.org/10.15407/spqeo19.04.366. https://doi.org/10.15407/spqeo19.04.366 | | 16. Romanets P.M., Konakova R.V., Boltovets M.S., Basanets V.V., Kudryk Ya.Ya., Slipokurov V.S. Peculiarities of study of Au-Ti-Pd-n+-n-n+-Si multilayer contact structure to avalanche-trans-mitted diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. No.1. P. 34-38. doi: https://doi.org/10.15407/spqeo22.01.35. https://doi.org/10.15407/spqeo22.01.034 | | 17. Sinha A. K. Electrical characteristics and thermal stability of platinum silicide-to-silicon ohmic contacts metalized with tungsten. J. Electrochem. Soc. 1973. 120, No 12. P. 1767-1771. doi: 10.1149/1.2403360. https://doi.org/10.1149/1.2403360 | | 18. Cohen S.S., Piacente P.A., Gildenblat G., Brown D.M. Platinum silicide ohmic contacts to shallow junctions in silicon. J. Appl. Phys. 1982. 53, No. 12. P. 8856-8862. https://doi.org/10.1063/1.330439. https://doi.org/10.1063/1.330439 | | 19. Akiya M., Nakamura H. Low ohmic contact to silicon with a magnesium/aluminum layered metallization. J. Appl. Phys. 1986. 59, No. 5. P. 1596-1598. https://doi.org/10.1063/1.336469. https://doi.org/10.1063/1.336469 | | 20. Ballif C., Huljić D.M., Willeke G., Hessler-Wyser A. Silver thick-film contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface. Appl. Phys. Lett. 2003. 82, No. 12. P. 1878-1880. https://doi.org/10.1063/1.1562338. https://doi.org/10.1063/1.1562338 | | 21. Ting C.Y., Chen C.Y. A study of the contacts of a diffused resistor. Solid-State Electronics.1971. 14, No. 6. P. 433-438. https://doi.org/10.1016/0038-1101(71)90051-7. https://doi.org/10.1016/0038-1101(71)90051-7 | | 22. Wittmer M., Studer B., Melchior H. Electrical characteristics of TiN contacts to n silicon. J. Appl. Phys. 1981. 52, No. 9. P. 5722-5726. https://doi.org/10.1063/1.329512. https://doi.org/10.1063/1.329512 | | 23. Vinod P.N. Specific contact resistance of the porous silicon and silver metal Ohmic contact structure. Semiconductor Sci. Technol. 2005. 20, No. 9. P. 966-971.http://dx.doi.org/10.1088/0268-1242/20/9/014. https://doi.org/10.1088/0268-1242/20/9/014 | | 24. Lee E.K., Lim D.C., Lee K.H., Lim J.H. Self-aligned Ni-P ohmic contact scheme for silicon solar cells by electroless deposition. Electron. Mater. Lett. 2012. 8, No. 4. P. 391-395. https://doi.org/10.1007/s13391-012-2015-0. https://doi.org/10.1007/s13391-012-2015-0 | | 25. Shepela A. The specific contact resistance of Pd2Si contacts on n- and p-Si. Solid-State Electronics. 1973. 16, No. 4. P. 477-481. https://doi.org/10.1016/0038-1101(73)90185-8. https://doi.org/10.1016/0038-1101(73)90185-8 | | 26. Berger H.H. Contact resistance and contact resistivity. J. Electrochem. Soc. 1972. 119, No. 4. P. 507-514. doi: 10.1149/1.2404240. https://doi.org/10.1149/1.2404240 | | 27. Varahramyan K., Verret E.J. A model for specific contact resistance applicable for titanium silicide-silicon contacts. Solid-State Electronics. 1996. 39, No 11. P. 1601-1607. https://doi.org/10.1016/0038-1101(96)00091-3. https://doi.org/10.1016/0038-1101(96)00091-3 | | 28. King P.J., Arac E., Ganti S., Kwa K.S., Ponon N., O'Neill A.G. Improving metal/semiconductor conductivity using AlOx interlayers on n-type and p-type Si. Appl. Phys. Lett. 2014. 105, No. 5. P. 052101-052104. https://doi.org/10.1063/1.4892003. https://doi.org/10.1063/1.4892003 | | 29. Zaima S., Nakatsuka O., Sakai A., Murota J., Yasuda Y. Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe (C) contacts. Appl. Surf. Sci. 2004. 224, No. 1-4. P. 215-221. https://doi.org/10.1016/j.apsusc.2003.08.049. https://doi.org/10.1016/j.apsusc.2003.08.049 | | 30. Boberg G., Stolt L., Tove P.A., Norde H. Contact resistance measurements of platinum-silicide and chromium contacts to highly doped n and p silicon. Physica Scripta. 1981. 24, No. 2. P. 405-407. https://doi.org/10.1088/0031-8949/24/2/012 | | 31. Zaima S., Yamauchi T., Koide Y., Yasuda Y. Study on determining factors of low contact resistivity in transition metal-silicon systems. Appl. Surf. Sci. 1993. 70. P. 624-628. https://doi.org/10.1016/0169-4332(93)90591-X. https://doi.org/10.1016/0169-4332(93)90591-X | | 32. Swirhun S., Saraswat K.C., Swanson R.M. Contact resistance of LPCVD W/Al and PtSi/W/Al metallization. IEEE Electron Device Lett. 1984. 5, No. 6. P. 209-211. doi: 10.1109/EDL.1984.25890. https://doi.org/10.1109/EDL.1984.25890 | | 33. Ting C.Y., Wittmer M. The use of titanium-based contact barrier layers in silicon technology. Thin Solid Films. 1982. 96, No. 4. P. 327-345. https://doi.org/10.1016/0040-6090(82)90516-8. https://doi.org/10.1016/0040-6090(82)90516-8 | | 34. Ting C.Y., Crowder B.L. Electrical properties of Al/Ti contact metallurgy for VLSI application. J. Electrochem. Soc. 1982. 129, No 11. P. 2590-2594. doi: 10.1149/1.2123616. https://doi.org/10.1149/1.2123616 | | 35. Tsuchiya Y., Tobioka A., Nakatsuka O. et al. Electrical properties and solid-phase reactions in Ni/Si (100) contacts. Jpn. J. Appl. Phys. 2002. 41(4S). P. 2450-2454. doi: 10.1143/JJAP.41.2450. https://doi.org/10.1143/JJAP.41.2450 | | 36. Kumar V. Fabrication and Thermal Stability of W-Si Ohmic Contacts. J. Electrochem. Soc. 1976. 123, No. 2. P. 262-269. doi: 10.1149/1.2132801. https://doi.org/10.1149/1.2132801 | | 37. Lebedev A.I. Physics of Semiconductor Devices. Moscow: Fizmatlit Publ. House, 2008 (in Russian). | | 38. Schroder D.K. Semiconductor material and device characterization. John Wiley & Sons, 2006. https://doi.org/10.1002/0471749095 | | 39. Murarka S.P. Silicides for VLSI Applications. New York: Academic Press, 1983. https://trove.nla.gov.au/version/31883516. https://doi.org/10.1016/B978-0-08-057056-3.50012-4 | |
|
|