Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 193-200 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.193


References

1. Read Jr W.T. A proposed high-frequency, negative-resistance diode. Bell System Technical Journal. 1958. 37, No. 2, P. 401-446. https://doi.org/10.1002/j.1538-7305.1958.tb01527.x
https://doi.org/10.1002/j.1538-7305.1958.tb01527.x
2. Sze S.M, Ng Kwok K. Physics of Semiconductor Devices. John Wiley & Sons, Inc. 2006.
https://doi.org/10.1002/0470068329
3. Slipokurov V.S. Results of studying the electrical and physical characteristics of silicon avalanche transit-time diodes. Vishyk Zhytomyr. Derzh. Tekn. Univ., Ser.: Tekhn. Nauky. 2014. 1, No 68. P. 97-101 (in Ukrainian).
4. Acharyya A., Banerjee S., Banerjee J.P. Dependence of DC and small-signal properties of double drift region silicon IMPATT device on junction temperature. Journal of Electron Devices. 2012. 12, P. 725-729.
5. Belyaev A.E., Basanets V.V., Boltovets N.S. et al. Effect of p-n junction overheating on degradation of silicon high-power pulsed IMPATT diodes. Semiconductors. 2011. 45, No. 2. P. 253-259. https://doi.org/10.1134/S1063782611020047.
https://doi.org/10.1134/S1063782611020047
6. Acharyya A., Banerjee S., Banerjee J.P. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. Journal of Semiconductors. 2013. 34, No. 2. P. 024001. DOI:10.1088/1674-4926/34/2/024001.
https://doi.org/10.1088/1674-4926/34/2/024001
7. Tashilov A.S. Multi-mesa avalanche transit-time diodes of millimeter-wave range with an increased level of microwave output power. Thesis, candidate of engineering sciences. Nal'chik, 2006 (in Russian).
8. Acharyya A., Chakraborty J., Das Datta K.S., De P., Banerjee S., Banerjee J.P. Large-signal charac-terization of DDR silicon IMPATTs operating up to 0.5 THz. Intern. Journal of Microwave and Wireless Technologies. 2013. 5, No. 5. P. 567-578. https://doi.org/10.1017/S1759078713000597.
https://doi.org/10.1017/S1759078713000597
9. Gewartowski J.W. The effect of series resistance on avalanche diode (IMPATT) oscillator efficiency. Proc. IEEE. 1968. 56, No. 6. P. 1139-1140. DOI: 10.1109/PROC.1968.6503.
https://doi.org/10.1109/PROC.1968.6503
10. Misawa T. Negative resistance in p-n junctions under avalanche breakdown conditions, part I. IEEE Transactions on Electron Devices. 1966. 1. P. 137-143. DOI: 10.1109/T-ED.1966.15647.
https://doi.org/10.1109/T-ED.1966.15647
11. Acharyya A., Banerjee J.P. Numerical modeling of series resistance of millimeter-wave DDR IMPATTs. International Journal of Electronics and Electrical Engineering. 2012. 2. P. 9-18.
12. Brillson L.J. Contacts to Semiconductors. Fundamentals and Technology. 1993.
13. Belyaev A.E., Boltovets M.S., Kapitanchuk L.M. et al. Ohmic contacts Au-Ti-n+-Si and Au-Ti-Pd2Si-n+-Si to silicon microwave diodes. Technics and Microwave Devices. 2009. 2. P. 31-34 (in Russian).
14. Basanets V.V., Slipokurov V.S., Shynkarenko V.V., Kudryk R.Ya., Kudryk Ya.Ya. Investigation of specific resistance of Ohmic contacts Au-Ti-Pd-n-Si for avalanche transit-time diodes. Tekhnologia konstruirovanie v elektronnoi apparature. 2015. 1. P. 33-37 (in Russian).
15. Romanets P.M., Belyaev A.E., Sachenko А.V. et al. Theoretical and experimental modelling the specific resistance of vertical ohmic contacts Au-Ti-Pd-n+-n-n+-Si in IMPATT diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19, No. 4. P. 366-370. doi: https://doi.org/10.15407/spqeo19.04.366.
https://doi.org/10.15407/spqeo19.04.366
16. Romanets P.M., Konakova R.V., Boltovets M.S., Basanets V.V., Kudryk Ya.Ya., Slipokurov V.S. Peculiarities of study of Au-Ti-Pd-n+-n-n+-Si multilayer contact structure to avalanche-trans-mitted diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. No.1. P. 34-38. doi: https://doi.org/10.15407/spqeo22.01.35.
https://doi.org/10.15407/spqeo22.01.034
17. Sinha A. K. Electrical characteristics and thermal stability of platinum silicide-to-silicon ohmic contacts metalized with tungsten. J. Electrochem. Soc. 1973. 120, No 12. P. 1767-1771. doi: 10.1149/1.2403360.
https://doi.org/10.1149/1.2403360
18. Cohen S.S., Piacente P.A., Gildenblat G., Brown D.M. Platinum silicide ohmic contacts to shallow junctions in silicon. J. Appl. Phys. 1982. 53, No. 12. P. 8856-8862. https://doi.org/10.1063/1.330439.
https://doi.org/10.1063/1.330439
19. Akiya M., Nakamura H. Low ohmic contact to silicon with a magnesium/aluminum layered metallization. J. Appl. Phys. 1986. 59, No. 5. P. 1596-1598. https://doi.org/10.1063/1.336469.
https://doi.org/10.1063/1.336469
20. Ballif C., Huljić D.M., Willeke G., Hessler-Wyser A. Silver thick-film contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface. Appl. Phys. Lett. 2003. 82, No. 12. P. 1878-1880. https://doi.org/10.1063/1.1562338.
https://doi.org/10.1063/1.1562338
21. Ting C.Y., Chen C.Y. A study of the contacts of a diffused resistor. Solid-State Electronics.1971. 14, No. 6. P. 433-438. https://doi.org/10.1016/0038-1101(71)90051-7.
https://doi.org/10.1016/0038-1101(71)90051-7
22. Wittmer M., Studer B., Melchior H. Electrical characteristics of TiN contacts to n silicon. J. Appl. Phys. 1981. 52, No. 9. P. 5722-5726. https://doi.org/10.1063/1.329512.
https://doi.org/10.1063/1.329512
23. Vinod P.N. Specific contact resistance of the porous silicon and silver metal Ohmic contact structure. Semiconductor Sci. Technol. 2005. 20, No. 9. P. 966-971.http://dx.doi.org/10.1088/0268-1242/20/9/014.
https://doi.org/10.1088/0268-1242/20/9/014
24. Lee E.K., Lim D.C., Lee K.H., Lim J.H. Self-aligned Ni-P ohmic contact scheme for silicon solar cells by electroless deposition. Electron. Mater. Lett. 2012. 8, No. 4. P. 391-395. https://doi.org/10.1007/s13391-012-2015-0.
https://doi.org/10.1007/s13391-012-2015-0
25. Shepela A. The specific contact resistance of Pd2Si contacts on n- and p-Si. Solid-State Electronics. 1973. 16, No. 4. P. 477-481. https://doi.org/10.1016/0038-1101(73)90185-8.
https://doi.org/10.1016/0038-1101(73)90185-8
26. Berger H.H. Contact resistance and contact resistivity. J. Electrochem. Soc. 1972. 119, No. 4. P. 507-514. doi: 10.1149/1.2404240.
https://doi.org/10.1149/1.2404240
27. Varahramyan K., Verret E.J. A model for specific contact resistance applicable for titanium silicide-silicon contacts. Solid-State Electronics. 1996. 39, No 11. P. 1601-1607. https://doi.org/10.1016/0038-1101(96)00091-3.
https://doi.org/10.1016/0038-1101(96)00091-3
28. King P.J., Arac E., Ganti S., Kwa K.S., Ponon N., O'Neill A.G. Improving metal/semiconductor conductivity using AlOx interlayers on n-type and p-type Si. Appl. Phys. Lett. 2014. 105, No. 5. P. 052101-052104. https://doi.org/10.1063/1.4892003.
https://doi.org/10.1063/1.4892003
29. Zaima S., Nakatsuka O., Sakai A., Murota J., Yasuda Y. Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe (C) contacts. Appl. Surf. Sci. 2004. 224, No. 1-4. P. 215-221. https://doi.org/10.1016/j.apsusc.2003.08.049.
https://doi.org/10.1016/j.apsusc.2003.08.049
30. Boberg G., Stolt L., Tove P.A., Norde H. Contact resistance measurements of platinum-silicide and chromium contacts to highly doped n and p silicon. Physica Scripta. 1981. 24, No. 2. P. 405-407.
https://doi.org/10.1088/0031-8949/24/2/012
31. Zaima S., Yamauchi T., Koide Y., Yasuda Y. Study on determining factors of low contact resistivity in transition metal-silicon systems. Appl. Surf. Sci. 1993. 70. P. 624-628. https://doi.org/10.1016/0169-4332(93)90591-X.
https://doi.org/10.1016/0169-4332(93)90591-X
32. Swirhun S., Saraswat K.C., Swanson R.M. Contact resistance of LPCVD W/Al and PtSi/W/Al metallization. IEEE Electron Device Lett. 1984. 5, No. 6. P. 209-211. doi: 10.1109/EDL.1984.25890.
https://doi.org/10.1109/EDL.1984.25890
33. Ting C.Y., Wittmer M. The use of titanium-based contact barrier layers in silicon technology. Thin Solid Films. 1982. 96, No. 4. P. 327-345. https://doi.org/10.1016/0040-6090(82)90516-8.
https://doi.org/10.1016/0040-6090(82)90516-8
34. Ting C.Y., Crowder B.L. Electrical properties of Al/Ti contact metallurgy for VLSI application. J. Electrochem. Soc. 1982. 129, No 11. P. 2590-2594. doi: 10.1149/1.2123616.
https://doi.org/10.1149/1.2123616
35. Tsuchiya Y., Tobioka A., Nakatsuka O. et al. Electrical properties and solid-phase reactions in Ni/Si (100) contacts. Jpn. J. Appl. Phys. 2002. 41(4S). P. 2450-2454. doi: 10.1143/JJAP.41.2450.
https://doi.org/10.1143/JJAP.41.2450
36. Kumar V. Fabrication and Thermal Stability of W-Si Ohmic Contacts. J. Electrochem. Soc. 1976. 123, No. 2. P. 262-269. doi: 10.1149/1.2132801.
https://doi.org/10.1149/1.2132801
37. Lebedev A.I. Physics of Semiconductor Devices. Moscow: Fizmatlit Publ. House, 2008 (in Russian).
38. Schroder D.K. Semiconductor material and device characterization. John Wiley & Sons, 2006.
https://doi.org/10.1002/0471749095
39. Murarka S.P. Silicides for VLSI Applications. New York: Academic Press, 1983. https://trove.nla.gov.au/version/31883516.
https://doi.org/10.1016/B978-0-08-057056-3.50012-4