Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 201-205 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.201


References

1. Tian B., Zheng X., Kempa T.J., Fang Y., Yu N., Yu G., Huang J., and Lieber C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature. 2007. 449. P. 885-890. https://doi.org/10.1038/nature06181.
https://doi.org/10.1038/nature06181
2. Soci C., Zhang A., Bao X.-Y., Kim H., Lo Y., and Wang D. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010. 10, No 3. P. 1430-1449.
https://doi.org/10.1166/jnn.2010.2157
3. Hua B., Motohisa J., Kobayashi Y., Hara S., and Fukui T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 2009. 9, No 1. P. 112-116. https://doi.org/10.1021/nl802636b.
https://doi.org/10.1021/nl802636b
4. Xiang J., Lu W., Hu Y., Wu Y., Yan H., and Lieber C.M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature. 2006. 441. P. 489-493. https://doi.org/ 10.1038/nature04796.
https://doi.org/10.1038/nature04796
5. Jiang X., Xiong Q., Nam S., Qian F., Li Y., and Lieber C.M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007. 7, No 10. P. 3214-3218. https://doi.org/10.1021/nl072024a.
https://doi.org/10.1021/nl072024a
6. Petrosyan S., Yesayan A., and Nersesyan S. Theory of nanowire radial p-n-junction. World Academy of Science, Engineering and Technology, International Science Index 71, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering. 2012. 6, No 11. P. 1065-1070.
7. Borblik V.L. Concerning the depletion width of a radial p-n junction and its influence on electrical properties of the diode. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. 20, No 2. P. 168-172. http://doi.org/10.15407/spqeo20.02.168.
https://doi.org/10.15407/spqeo20.02.168
8. Borblik V.L. Electrostatics of nanowire radial p-n heterojunctions. J. Electron. Mater. 2018. 47, No 7. P. 4022-4027. https://doi.org/10.1007/s11664-018-6288-4.
https://doi.org/10.1007/s11664-018-6288-4
9. Borblik V.L. Effect of circular p-n junction curvature on the diode current density. J. Electron. Mater. 2016. 45, No 8. P. 4117-4121. https://doi.org/10.1007/s11664-016-4597-z.
https://doi.org/10.1007/s11664-016-4597-z
10. Tian B., Kempa T.J., and Lieber C.M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009. 38, No 1. P. 16-24. https://doi.org/10.1039/b718703n.
https://doi.org/10.1039/B718703N
11. Colombo C., Heiβ M., Grätzel M., Fontcuberta i Morral A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009. 94, No 17. P. 173108. https://doi.org/10.1063/1.3125435.
https://doi.org/10.1063/1.3125435
12. Yoo J., Dayeh S.A., Tang W., and Picraux S.T. Epitaxial growth of radial Si p-i-n junctions for photovoltaic applications. Appl. Phys. Lett. 2013. 102, No 9. P. 093113. https://doi.org/10.1063/1.4794541.
https://doi.org/10.1063/1.4794541
13. Zhang Y., Sanchez A.M., Aagesen M. et al. Growth and fabrication of high-quality single nanowire devices with radial p-i-n junctions. Small. 2019. 15. P. 1803684 (7 p.). https://doi.org/10.1002/smll.201803684.
https://doi.org/10.1002/smll.201803684
14. Qian F., Li Y., Gradečak S., Wang D., Barrelet C.J., and Lieber C.M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 2004. 4, No 10. P. 1975-1979. https://doi.org/10.1021/nl0487774.
https://doi.org/10.1021/nl0487774
15. Abdellatif S. and Kirah K. Numerical modeling and simulation for a radial p-i-n nanowire photovoltaic device. Energy Procedia. 2013. 36. P. 488-491. https://doi.org/10.1016/j.egypro.2013.07.055.
https://doi.org/10.1016/j.egypro.2013.07.055
16. Sze S.M. Physics of Semiconductor Devices. John Wiley & Sons, 1981.