Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 206-214 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.206


References

1. Beard M.C., Luther J.M., and Nozik A.J. The promise and challenge of nanostructured solar cells. Nat. Nano. 2014. 9, No 12. P. 951. https://doi.org/10.1038/nnano.2014.292.
https://doi.org/10.1038/nnano.2014.292
2. Alferov Z.I., Andreev V.M., and Rumyantsev V.D. Solar photovoltaics: Trends and prospects. Semiconductors. 2004. 38. P. 899. http://dx.doi.org/10.1134/1.1787110.
https://doi.org/10.1134/1.1787110
3. Yan B., Yue G., Xu X., Yang J., and Guha S. High efficiency amorphous and nanocryistalline sillicon solar cells. phys. status solidi. 2010. 207. P. 671. http://dx.doi.org/10.1002/pssa.200982886.
https://doi.org/10.1002/pssa.200982886
4. Lewis N.S. Toward cost-effective solar energy use. Science. 2007. 315. P. 798. https://doi.org/10.1126/science.1137014.
https://doi.org/10.1126/science.1137014
5. Søndergaard R., Hösel M., Angmo D., Larsen-Ol-sen T.T., and Krebs F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today. 2012. 15. P. 36. https://doi.org/10.1016/S1369-7021(12)70019-6.
https://doi.org/10.1016/S1369-7021(12)70019-6
6. Birkholz M., Selle B., Conrad E., Lips K., and Fuhs W. Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J. Appl. Phys. 2000. 88. P. 4376. https://doi.org/10.1063/1.1289783.
https://doi.org/10.1063/1.1289783
7. Rech B., Roschek T., Müller J., Wieder S., and Wagner H. Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol. Energy Mater. Sol. Cells. 2001. 66. P. 267. https://doi.org/10.1016/S0927-0248(00)00183-5.
https://doi.org/10.1016/S0927-0248(00)00183-5
8. van Veen M.K., van der Werf C.H.M., and Schropp R.E.I. Tandem solar cells deposited using hot-wire chemical vapor deposition. J. Non. Cryst. Solids. 2004. 338-340. P. 655. https://doi.org/10.1016/j.jnoncrysol.2004.03.071.
https://doi.org/10.1016/j.jnoncrysol.2004.03.071
9. Mai Y., Klein S., Carius R., Stiebig H., Houben L., Geng X., and Finger F. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J. Non. Cryst. Solids. 2006. 352. P. 1859. https://doi.org/10.1016/j.jnoncrysol.2005.11.116.
https://doi.org/10.1016/j.jnoncrysol.2005.11.116
10. Li H., Franken R.H., Stolk R.L., van der Werf C.H.M., Rath J.K., and Schropp R.E.I. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique. J. Non. Cryst. Solids. 2008. 354. P. 2087. https://doi.org/10.1016/j.jnoncrysol.2007.10.046.
https://doi.org/10.1016/j.jnoncrysol.2007.10.046
11. Amrani R., Pichot F., Chahed L., and Cuminal Y. Amorphous-nanocrystalline transition in silicon thin films obtained by argon diluted silane PECVD, Cryst. Struct. Theory Appl. 2012. 1. P. 57. http://dx.doi.org/10.4236/csta.2012.13011.
https://doi.org/10.4236/csta.2012.13011
12. Fugallo G. and Mattoni A. Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon. Phys. Rev. B. 2014. 89. P. 045301. https://doi.org/10.1103/PhysRevB.89.045301.
https://doi.org/10.1103/PhysRevB.89.045301
13. Nast O. and Hartmann A.J. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. J. Appl. Phys. 2000. 88. P. 716. https://doi.org/10.1063/1.373727.
https://doi.org/10.1063/1.373727
14. Jeon M., Jeong C., Kamisako K. Tin induced crys-tallization of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 2010. 26. P. 875. https: //doi.org/10.1179/026708309X12454008169500.
https://doi.org/10.1179/026708309X12454008169500
15. Mohiddon M.A. and Krishna M.G. Growth and optical properties of Sn-Si nanocomposite thin films. J. Mater. Sci. 2012. 47. P. 6972. https://doi.org/10.1007/s10853-012-6647-0.
https://doi.org/10.1007/s10853-012-6647-0
16. Van Gestel D., Gordon I., and Poortmans J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells. 2013. 119. P. 261.https://doi.org/10.1016/j.solmat.2013.08.014.
https://doi.org/10.1016/j.solmat.2013.08.014
17. Ahamad Mohiddon Mahamad and Ghanashyam Krishna Mamidipudi. Metal Induced Crystallization, Crystallization - Science and Technology. M.R.B. Andreeta (Ed.). IntechOpen, 2012. DOI: 10.5772/50064.
https://doi.org/10.5772/50064
18. Voitovych V.V., Neimash V.B., Krasko N.N., Kolosiuk A.G., Povarchuk V.Y., Rudenko R.M., Makara V.A., Petrunya R.V., Juhimchuk V.O., and Strelchuk V.V. The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors. 2011. 45. P. 1281. https://doi.org/10.1134/S1063782611100253.
https://doi.org/10.1134/S1063782611100253
19. Neimash V.B., Poroshin V.M., Kabaldin A.M., Yukhymchuk V.O., Shepeliavyi P.E., Makara V.A., and Larkin S.Y. Microstructure of thin Si-Sn composite films. Ukr. J. Phys. 2013. 58. P. 865. https://doi.org/10.15407/ujpe58.09.0865.
https://doi.org/10.15407/ujpe58.09.0865
20. Neimash V., Poroshin V., Shepeliavyi P., Yukhym-chuk V., Melnyk V., Kuzmich A., Makara V., and Goushcha A.O. Tin induced a-Si crystallization in thin films of Si-Sn alloys. J. Appl. Phys. 2013. 114. P. 213104. https://doi.org/10.1063/1.4837661.
https://doi.org/10.1063/1.4837661
21. Neimash V.B., Goushcha A.O., Shepeliavyi P.E., V.O. Yukhymchuk, Dan'ko V.A., Melnyk V., and Kuzmich A. Mechanism of tin-induced cristallization in amorphous silicon. Ukr. J. Phys. 2014. 59. P. 1168. https://doi.org/10.15407/ujpe59.12.1168.
https://doi.org/10.15407/ujpe59.12.1168
22. Neimash V.B., Goushcha A.O., Shepeliavyi P.Y., Yuhymchuk V.O., Melnyk V.V., and Kuzmich A.G. Self-sustained cyclic tin induced crystallization of amorphous silicon. Journal of Materials Research. 2015. 30, No 20. 3116. https://doi.org/10.1557/jmr.2015.251.
https://doi.org/10.1557/jmr.2015.251
23. Neimash V., Shepeliavyi P., Dovbeshko G., Goushcha A., Isaiev M., Melnyk V., and Kuzmich A.G. Nanocrystals growth control during laser annealing of Sn:(α-Si) composites. Journal of Nanomaterials. 2016. 2016. http://dx.doi.org/10.1155/2016/7920238.
https://doi.org/10.1155/2016/7920238
24. Neimash V.B., Goushcha A.O., Fedorenko L.L., Shepeliavyi P.Ye., Strelchuk V.V., Nikolenko A.S., Isaiev M.V., and Kuzmich A.G. Role of laser power, wavelength, and pulse duration in laser assisted tin-induced crystallization of amorphous silicon. Journal of Nanomaterials. 2018. 2018. https://doi.org/10.1155/2018/1243685].
https://doi.org/10.1155/2018/1243685
25. Richter H., Wang Z.P., and Ley L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications. 1981. 39. P. 625. https://doi.org/10.1016/0038-1098(81)90337-9.
https://doi.org/10.1016/0038-1098(81)90337-9
26. Campbell I.H. and Fauchet P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications. 1986. 58. P. 739. https://doi.org/10.1016/0038-1098(86)90513-2.
https://doi.org/10.1016/0038-1098(86)90513-2
27. Hart T.R., Aggarwal R.L., and Lax B. Temperature dependence of Raman scattering in silicon. Phys. Rev. B. 1970. 1, No 2. P. 638. https://doi.org/10.1103/PhysRevB.1.638.
https://doi.org/10.1103/PhysRevB.1.638
28. Tsu R. and Hernandez J.G. Temperature dependence of silicon Raman lines. Appl. Phys. Lett. 1982. 41. P. 1016. https://doi.org/10.1063/1.93394.
https://doi.org/10.1063/1.93394
29. Nikolenko A.S. Temperature dependence of Raman spectra of silicon nanocrystals in oxide matrix Ukr. J. Phys. 2013. 58, No 10. P. 980. https://doi.org/10.15407/ujpe58.10.0980.
https://doi.org/10.15407/ujpe58.10.0980
30. Falcao B.P., Leitao J.P., Correia M.R., Soares M.R., Wiggers H., Cantarero A., and Pereira R.N. Light-induced nonthermal population of optical phonons in nanocrystals. Phys. Rev. B. 2017. 95. P. 115439. https://doi.org/10.1103/PhysRevB.95.115439.
https://doi.org/10.1103/PhysRevB.95.115439