Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 215-223 (2019).
DOI:
https://doi.org/10.15407/spqeo22.02.215
References
1. Ding S.Y., You E.-M., Tianand Z.-Q., Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017. 46, Issue 13. P. 4042-4076. DOI: 10.1039/C7CS00238F. https://doi.org/10.1039/C7CS00238F | | 2. Dong J., Tao Q., Guo M., Yana T. and Qian W. Glucose-responsive multifunctional acupuncture needle: A universal SERS detection strategy of small biomolecules in vivo. Anal. Methods. 2012. 4, Issue 11. P. 3879-3883. DOI: 10.1039/C2AY25733E. https://doi.org/10.1039/c2ay25733e | | 3. Vo‐Dinh T., Allain L.R., Stokes D.L. Cancer gene detection using surface‐enhanced Raman spectroscopy (SERS). J. Raman. Spec. 2002. 33, Issue 7. P. 511-516. DOI: 10.1002/jrs.883. https://doi.org/10.1002/jrs.883 | | 4. Pang S., Yang T., He L. Review of surface enhanced Raman scattering (SERS) detection of synthetic chemical pesticides. Trends in Analytical Chemistry. 2016. 85. P. 73-82. DOI: 10.1016/j.trac.2016.06.017. https://doi.org/10.1016/j.trac.2016.06.017 | | 5. Matikainen A., Nuutinen T., Itkonen T. et al. Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Sci. Rep. 2016. 6. P. 37192. DOI: 10.1038/srep37192. https://doi.org/10.1038/srep37192 | | 6. Saleh T.A. Pharmaceutical characterization and detection using surface-enhanced Raman scattering. Int. Arch. Clin. Pharmacol. 2017. 3, Issue 1. DOI: 10.23937/2572-3987.1510010. https://doi.org/10.23937/2572-3987.1510010 | | 7. Kleinman S.L., Frontiera R.R., Henry A.-I., Dieringer J.A., Van Duyne R.P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013. 15, Issue 1. DOI: 10.1039/C2CP42598J. https://doi.org/10.1039/C2CP42598J | | 8. Sarfo D.K., Izake E.L., O'Mullane A.P. & Ayoko G.A. Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Crit. Rev. Env. Sci. and Tech. 2019. 49, Issue 14. P. 1294-1329. DOI: 10.1080/10643389.2019.1576468. https://doi.org/10.1080/10643389.2019.1576468 | | 9. Yukhymchuk V.O., Hreshchuk O.M., Dzhagan V.M., Sakhno M.V., Skoryk M.A., Lavoryk S.R., Rudko G.Y., Matveevskaya N.A., Beynik T.G., and Valakh M.Ya. Experimental studies and modeling of "Starlike" plasmonic nanostructures for SERS application. phys. status solidi (b). 2019. 256, No 2. P. 1800280. DOI:10.1002/pssb.201800280. https://doi.org/10.1002/pssb.201800280 | | 10. Schatz G.C., Young M.A., Duyne R.P.V. Electromagnetic mechanism of SERS. In: Kneipp K., Moskovits M., Kneipp H. (eds.) Surface-Enhanced Raman Scattering. Topics in Applied Physics. Springer, Berlin, Heidelberg, 2006. 103. P. 19-46. DOI: 10.1007/3-540-33567-6. https://doi.org/10.1007/3-540-33567-6 | | 11. Sun X., Li H. A review: Nanofabrication of surface-enhanced Raman spectroscopy (SERS) substrates. Curr. Nanosci. 2016. 12, Issue 2. P. 175-183. DOI: 10.2174/1573413711666150523001519. https://doi.org/10.2174/1573413711666150523001519 | | 12. McNay G., Eustace D., Smith W.E., Faulds K., Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications. Appl. Spectroscopy. 2011. 65, Issue 8. DOI: 10.1366/11-06365. https://doi.org/10.1366/11-06365 | | 13. Fanab M., Andradec G.F.S., Brolod A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta. 2011. 693, Issues 1-2. P. 7-25. DOI: 10.1016/j.aca.2011.03.002. https://doi.org/10.1016/j.aca.2011.03.002 | | 14. Luo S.-C., Sivashanmugan K., Liao J.-D., Yao C.-K., Peng H.-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosensors and Bioelectronics. 2014. 61. P. 232-240. DOI: 10.1016/j.bios.2014.05.013. https://doi.org/10.1016/j.bios.2014.05.013 | | 15. Mosier-Boss P.A. Review of SERS substrates for chemical sensing. Nanomaterials. 2017. 7, Issue 6. P. 142. DOI: 10.3390/nano7060142. https://doi.org/10.3390/nano7060142 | | 16. Yukhymchuk V.O., Hreshchuk O.M., Valakh M.Ya., Ye.G. Gule, M.A. Skoryk, Efanov V.S., Matveevskaya N.A., Beynik T.G. Design and characterization of nanostructured SERS substrates based on gold nanostars. SPQEO. 2017. 20, Issue 1. P. 41-47. DOI: 10.15407/spqeo20.01.041. https://doi.org/10.15407/spqeo20.01.041 | | 17. Yukhymchuk V.O., Hreshchuk O.M., Valakh M.Ya., Skoryk M.A., Efanov V.S., Matveevskaya N.A. Efficient core-SiO2/shell-Au nanostructures for surface enhanced Raman scattering. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2014. 17, Issue 3. P. 217-221. https://doi.org/10.15407/spqeo17.03.217 | | 18. Sheremet E., Milekhin A.G., Rodriguez R.D. et al. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Phys. Chem. Chem. Phys. 2015. 17, Issue 33. P. 21198-21203. https://doi.org/10.1039/C4CP05087H | | 19. Dan'ko V., Indutnyi I., Myn'ko V., Lukaniuk M., Shepeliavyi P. The nanostructuring of surfaces and films using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. P. 83. https://doi.org/10.1186/s11671-015-0765-y | | 20. Dan'ko V., Dmitruk M., Indutnyi I., Mamykin S. et al. Fabrication of periodic plasmonic structures using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. P. 497. https://doi.org/10.1186/s11671-015-1203-x | | 21. Canamares M.V., Cjema C., Birke R.L., Lombardi J.R. DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. 2008. 112. P. 20295. https://doi.org/10.1021/jp807807j | | 22. Lai K., Zhang Y., Du R., Zhai F., Rasco B.A., Huang Y. Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sensing and Instrumentation for Food Quality and Safety. 2011. 5, Issue 1. P. 19-24. https://doi.org/10.1007/s11694-011-9106-8 | |
|
|