Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 215-223 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.215


References

1. Ding S.Y., You E.-M., Tianand Z.-Q., Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017. 46, Issue 13. P. 4042-4076. DOI: 10.1039/C7CS00238F.
https://doi.org/10.1039/C7CS00238F
2. Dong J., Tao Q., Guo M., Yana T. and Qian W. Glucose-responsive multifunctional acupuncture needle: A universal SERS detection strategy of small biomolecules in vivo. Anal. Methods. 2012. 4, Issue 11. P. 3879-3883. DOI: 10.1039/C2AY25733E.
https://doi.org/10.1039/c2ay25733e
3. Vo‐Dinh T., Allain L.R., Stokes D.L. Cancer gene detection using surface‐enhanced Raman spectroscopy (SERS). J. Raman. Spec. 2002. 33, Issue 7. P. 511-516. DOI: 10.1002/jrs.883.
https://doi.org/10.1002/jrs.883
4. Pang S., Yang T., He L. Review of surface enhanced Raman scattering (SERS) detection of synthetic chemical pesticides. Trends in Analytical Chemistry. 2016. 85. P. 73-82. DOI: 10.1016/j.trac.2016.06.017.
https://doi.org/10.1016/j.trac.2016.06.017
5. Matikainen A., Nuutinen T., Itkonen T. et al. Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Sci. Rep. 2016. 6. P. 37192. DOI: 10.1038/srep37192.
https://doi.org/10.1038/srep37192
6. Saleh T.A. Pharmaceutical characterization and detection using surface-enhanced Raman scattering. Int. Arch. Clin. Pharmacol. 2017. 3, Issue 1. DOI: 10.23937/2572-3987.1510010.
https://doi.org/10.23937/2572-3987.1510010
7. Kleinman S.L., Frontiera R.R., Henry A.-I., Dieringer J.A., Van Duyne R.P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013. 15, Issue 1. DOI: 10.1039/C2CP42598J.
https://doi.org/10.1039/C2CP42598J
8. Sarfo D.K., Izake E.L., O'Mullane A.P. & Ayoko G.A. Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Crit. Rev. Env. Sci. and Tech. 2019. 49, Issue 14. P. 1294-1329. DOI: 10.1080/10643389.2019.1576468.
https://doi.org/10.1080/10643389.2019.1576468
9. Yukhymchuk V.O., Hreshchuk O.M., Dzhagan V.M., Sakhno M.V., Skoryk M.A., Lavoryk S.R., Rudko G.Y., Matveevskaya N.A., Beynik T.G., and Valakh M.Ya. Experimental studies and modeling of "Starlike" plasmonic nanostructures for SERS application. phys. status solidi (b). 2019. 256, No 2. P. 1800280. DOI:10.1002/pssb.201800280.
https://doi.org/10.1002/pssb.201800280
10. Schatz G.C., Young M.A., Duyne R.P.V. Electromagnetic mechanism of SERS. In: Kneipp K., Moskovits M., Kneipp H. (eds.) Surface-Enhanced Raman Scattering. Topics in Applied Physics. Springer, Berlin, Heidelberg, 2006. 103. P. 19-46. DOI: 10.1007/3-540-33567-6.
https://doi.org/10.1007/3-540-33567-6
11. Sun X., Li H. A review: Nanofabrication of surface-enhanced Raman spectroscopy (SERS) substrates. Curr. Nanosci. 2016. 12, Issue 2. P. 175-183. DOI: 10.2174/1573413711666150523001519.
https://doi.org/10.2174/1573413711666150523001519
12. McNay G., Eustace D., Smith W.E., Faulds K., Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications. Appl. Spectroscopy. 2011. 65, Issue 8. DOI: 10.1366/11-06365.
https://doi.org/10.1366/11-06365
13. Fanab M., Andradec G.F.S., Brolod A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta. 2011. 693, Issues 1-2. P. 7-25. DOI: 10.1016/j.aca.2011.03.002.
https://doi.org/10.1016/j.aca.2011.03.002
14. Luo S.-C., Sivashanmugan K., Liao J.-D., Yao C.-K., Peng H.-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosensors and Bioelectronics. 2014. 61. P. 232-240. DOI: 10.1016/j.bios.2014.05.013.
https://doi.org/10.1016/j.bios.2014.05.013
15. Mosier-Boss P.A. Review of SERS substrates for chemical sensing. Nanomaterials. 2017. 7, Issue 6. P. 142. DOI: 10.3390/nano7060142.
https://doi.org/10.3390/nano7060142
16. Yukhymchuk V.O., Hreshchuk O.M., Valakh M.Ya., Ye.G. Gule, M.A. Skoryk, Efanov V.S., Matveevskaya N.A., Beynik T.G. Design and characterization of nanostructured SERS substrates based on gold nanostars. SPQEO. 2017. 20, Issue 1. P. 41-47. DOI: 10.15407/spqeo20.01.041.
https://doi.org/10.15407/spqeo20.01.041
17. Yukhymchuk V.O., Hreshchuk O.M., Valakh M.Ya., Skoryk M.A., Efanov V.S., Matveevskaya N.A. Efficient core-SiO2/shell-Au nanostructures for surface enhanced Raman scattering. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2014. 17, Issue 3. P. 217-221.
https://doi.org/10.15407/spqeo17.03.217
18. Sheremet E., Milekhin A.G., Rodriguez R.D. et al. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Phys. Chem. Chem. Phys. 2015. 17, Issue 33. P. 21198-21203.
https://doi.org/10.1039/C4CP05087H
19. Dan'ko V., Indutnyi I., Myn'ko V., Lukaniuk M., Shepeliavyi P. The nanostructuring of surfaces and films using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. P. 83.
https://doi.org/10.1186/s11671-015-0765-y
20. Dan'ko V., Dmitruk M., Indutnyi I., Mamykin S. et al. Fabrication of periodic plasmonic structures using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. P. 497.
https://doi.org/10.1186/s11671-015-1203-x
21. Canamares M.V., Cjema C., Birke R.L., Lombardi J.R. DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. 2008. 112. P. 20295.
https://doi.org/10.1021/jp807807j
22. Lai K., Zhang Y., Du R., Zhai F., Rasco B.A., Huang Y. Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sensing and Instrumentation for Food Quality and Safety. 2011. 5, Issue 1. P. 19-24.
https://doi.org/10.1007/s11694-011-9106-8