Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 141-145 (2020).
DOI:
https://doi.org/10.15407/spqeo23.02.141
References
1. Sultan S.M., Ditshego N.J., Gunn R., Ashburn P., and Chong H.M. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors. Nanoscale Res. Lett. 2014. 9, No 1. Article number 517. https://doi.org/10/1186/1556-276X-9-517. https://doi.org/10.1186/1556-276X-9-517 | | 2. Bayraktaroglu B., Leedy K., and Neidhard R. High-frequency ZnO thin-film transistors on Si substrates. 2009. 30, No 9. P. 946-948. https://doi.org/10.1109/LED.2009.2025672. https://doi.org/10.1109/LED.2009.2025672 | | 3. Cheng-Liang Hsu, Tsai Tsung-Ying. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates. J. Electrochem. Soc. 2011. 158, No 2. P. K20-K23. https://doi.org/10.1149/1.3517078. https://doi.org/10.1149/1.3517078 | | 4. Zhou Yu-Ming, He Yi-Gang, Lu Ai-Xia, and Wan Qing. Simulation of grain boundary effect on cha-racteristics of ZnO thin film transistor by consi-dering the location and orientation of grain boun-dary. Chinese Phys. B. 2009. 18, No 9. P. 3966-3969. https://doi.org/10.1088/1674-1056/18/9/057. https://doi.org/10.1088/1674-1056/18/9/057 | | 5. Hossain F., Nishii J. and Takagi S. et al. Modeling and simulation of polycrystalline ZnO thin film transistors. J. Appl. Phys. 2003. 94, No 12. P. 7768-7777. https://doi.org/10.1063/1.1628834. https://doi.org/10.1063/1.1628834 | | 6. Alivisatos A.P. Semiconductor clusters, nano-crystals, and quantum dots. Science. 1996. 271, Issue 5251. P. 933-937. https://doi.org/10.1126/science.271.5251.933. https://doi.org/10.1126/science.271.5251.933 | | 7. Tang Z., Kotov N.A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 2005. 17, No 8. P. 951-962. https://doi.org/10.1002/adma.200401593. https://doi.org/10.1002/adma.200401593 | | 8. Lu W., Lieber C.M. Nanoelectronics from the bottom up. Nat. Mater. 2007. 6, No 11. P. 841-850. https://doi.org/10.1038/nmat2028. https://doi.org/10.1038/nmat2028 | | 9. http:// www.itrs.net/links/2010itrs. | | 10. Sarker Sh., Islam M.M., Alam N.K., Islam R. Gate dielectric strength dependent performance of CNT MOSFET and CNT TFET: A tight binding study. Results in Physics, C. 2016. 6. P. 879-883. https://doi.org/10.1109/ICCITECHN.2016.7860188 https://doi.org/10.1109/ICCITECHN.2016.7860188 | | 11. Lee J.H., Koh K., Lee N.I. et al. Effects of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric. IEDM Tech. Dig. 2000. P. 645-648. | | 12. Jing Guo, Supriyo Datta, Lundstrom M., Anantam M.P. Toward multi-scale modeling of carbon nanotube transistors. Intern. J. Multiscale Computat. Eng. 2004. 2, No 2. P. 257-276. https://doi.org/10.1615/IntJMultCompEng.v2.i2.60. https://doi.org/10.1615/IntJMultCompEng.v2.i2.60 | | 13. Koswatta S., Jing Guo, Nikonov D.E. MOSCNT: Code for carbon nanotube transistor simulation. IEEE IEDM Tech. Digest. 2006. P. 518. | | 14. Svizhenko A., Anantram M.P., Govindan T.R. et al. Two dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 2001. 91. P. 2343-2355. https://doi.org/10.1063/1.1432117. https://doi.org/10.1063/1.1432117 | | 15. Clifford J.P., John D.L., Castro L.C., Pulfrey D.L. Electrostatics of partially gated carbon nanotube FETs. IEEE Transactions on Nanotechnology. 2004. 3. P. 281-286. https://doi.org/ 10.1109/TNANO.2004.828539. https://doi.org/10.1109/TNANO.2004.828539 | |
|
|