Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 175-179 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.175


References

1. Bacherikov Yu.Yu., Konakova R.V., Kocherov A.N. et al. Effect of microwave annealing on silicon dioxide/silicon carbide structures. Techn. Phys. 2003. 48. P. 598-601. https://doi.org/10.1134/1576474.
https://doi.org/10.1134/1.1576474
2. Effect of microwave annealing on silicon dioxide/silicon carbide structures. Techn. Phys. 2003. 48. P. 598-601. https://doi.org/10.1134/S106378420702017X.
https://doi.org/10.1134/S106378420702017X
3. Bacherikov Yu.Yu., Konakova R.V., Milenin V.V. et al. Changes in characteristics of gadolinium, titanium, and erbium oxide films on the SiC surface under microwave treatment. Semiconductors. 2008. 42, No 7. P. 868-872. https://doi.org/10.1134/S1063782608070191.
https://doi.org/10.1134/S1063782608070191
4. Okhrimenko O.B. A model for non-thermal action of microwave radiation on oxide film/ semiconductor structures. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2014. 17, No 3. P. 227-231. https://doi.org/10.15407/spqeo17.03.227.
https://doi.org/10.15407/spqeo17.03.227
5. Okhrimenko O.B. Phenomenological model of athermal interaction of microwave radiation with the structures wide-gap semiconductor - oxide film. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. 18. P. 452-455. https://doi.org/10.15407/spqeo18.04.452.
https://doi.org/10.15407/spqeo18.04.452
6. Nakashima S. and Harima H. Raman investigation of SiC polytypes. phys. status solidi (a). 1997. 162. P. 39-64. https://doi.org/10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L.
https://doi.org/10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L
7. Gorban' I.S., Skirda A.S. Photoionization spectra of impurity centers in -SiC(6H) under high temperatures. Ukrainskii fizich. zhurnal. 1981. 26, No 2. P. 228-232 (in Russian).
8. Gorban' I.S., Krokhmal' A.P. The impurity optical absorption and conduction band structure in 6H-SiC. Semiconductors. 2001. 35. P. 1242-1248. https://doi.org/ 10.1134/1.1418064.
https://doi.org/10.1134/1.1418064
9. Makarov V.V. Luminescent and optical properties of silicon carbide irradiated with fast neutrons. Fizika tverdogo tela. 1971. 13, No 8. P. 2357-2362 (in Russian).
10. Levin V.I., Tairov Yu.M., Tsvetkov V.F. Silicon carbide luminescence and its relation with variances of stoichiometry. Fizika i tekhnika poluprovodnikov. 1984. 18, No 7. P. 1194-1198 (in Russian).
11. Shi-Yi Zhuo, Xue-Chao Liu, Ting-Xiang Xu et al. Strong correlation between B-Al-N doping concentration fluctuation and photoluminescence effects of f-SiC. AIP Adv. 2018. 8. P. 075130. https://doi.org/10.1063/1.5044492.
https://doi.org/10.1063/1.5044492
12. Shi-Yi Zhuo, Xue-Chao Liu, Wei Huang et al. Photoluminescence properties of N and B codoped fluorescent 4H-SiC and 6H-SiC. AIP Adv. 2018. 8. P. 125001. https://doi.org/10.1063/1.5053996.
https://doi.org/10.1063/1.5053996
13. Satoshi Kamiyama, Motoaki Iwaya, Tetsuya Takeuchi et al. Fluorescent SiC and its application to white light-emitting diodes. J. Semicond. 2011. 32. P. 013004. https://doi.org/10.1088/1674-4926/32/1/013004.
https://doi.org/10.1088/1674-4926/32/1/013004
14. Zaluzhnyi A.G. Dislocations in Crystals, Their Motion and Elastic Properties. Moscow, Publ. House "Moscow Engineering Physics Institute", 1990 (in Russian).
15. Matare H.F. Defect Electronics in Semiconductors. Wiley-Intersci., N-Y-London-Sydney-Toronto, 1971.