Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 208-213 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.208


References

1. Sze S.M., Kwok K. Ng. Physics of Semiconductor Devices, Wiley, 2007.
https://doi.org/10.1002/0470068329
2. Thompson P.R. and Larason T.C. Method of measuring shunt resistance in photodiodes. Measurement Science Conference, Anaheim, CA, 2001.
3. Dongaonkar S., Servaites J.D., Ford G.M. et al. Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 2010. 108. P. 124509. https://doi.org/10.1063/1.3518509.
https://doi.org/10.1063/1.3518509
4. Banerjee S. and Anderson W.A. Temperature dependence of shunt resistance in photovoltaic devices. Appl. Phys. Lett. 1986. 49, No 1. P. 38-40. https://doi.org/10.1063/1.97076.
https://doi.org/10.1063/1.97076
5. Tobin S.P., Iwasa S., Tredwell T.J. 1/f noise in (Hg, Cd)Te photodiodes. IEEE Trans. Electron. Dev. 1980. ED-27, No 1. P. 43-48. https://doi.org/10.1109/T-ED.1980.19817.
https://doi.org/10.1109/T-ED.1980.19817
6. Vishnu Gopal, Sudha Gupta. Temperature dependence of ohmic shunt resistance in mercury cadmium telluride junction diode. Infrared Physics & Technology. 2004. 45. P. 265-271. https://doi.org/10.1016/j.infrared.2003.11.008.
https://doi.org/10.1016/j.infrared.2003.11.008
7. Johnson S.M., Rhiger D.R., Rosbeck J.P. et al. Effect of dislocations on the electrical and optical properties of long wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol. B. 1992. 10. P. 1499-1503. https://doi.org/10.1116/1.586278.
https://doi.org/10.1116/1.586278
8. Lebedev M.V., Sherstnev V.V., Kunitsyna E.V., Andreev I.A., and Yakovlev Yu.P. Passivation of infrared photodiodes with alcoholic sulfide solution. Semiconductors. 2011. 45, No. 4. P. 526-529. https://doi.org/10.1134/S1063782611040142.
https://doi.org/10.1134/S1063782611040142
9. Breitenstein O. Understanding shunting mechanisms in silicon cells: A review. Proc. 17th NREAL workshop on crystalline silicon solar cells and modules: materials and processes. Colorado, August 5-8, 2007. P. 61-70.
10. Breitenstein O., Altermatt P., Ramspeck K., Green M.A., Zhao J., Schenk A. Interpretation of the commonly observed IV characteristics of c-Si cells having ideality factor larger than two. IEEE 4th World Conference on Photovoltaic Energy Conference. 1. 2006. P. 879-884. https://doi.org/10.1109/WCPEC.2006.279597.
https://doi.org/10.1109/WCPEC.2006.279597
11. Calahorra Z., Bregman J., and Shapira Yoram. Studies of SiOx anodic native oxide interfaces on InSb. J. Vac. Sci. Technol. B. 1986. 4, No 5. P. 1195-1202. https://doi.org/10.1116/1.583483.
https://doi.org/10.1116/1.583483
12. Lampert M.A., Mark P. Current Injection in Solids. Academic Press, New York, 1970.
13. Kao K.C., Hwang W. Electrical Transport in Solids with Particular Reference to Organic Semiconductors. Pergamon Press, Oxford. 1981.
14. Sukach A.V. and Teterkin V.V. Ultrasonic treatment induced modification of the electrical properties of InAs p-n junctions. Techn. Phys. Lett. 2009. 35, No. 6. P. 514-517. https://doi.org/10.1134/S1063785009060108.
https://doi.org/10.1134/S1063785009060108
15. Tetyorkin V., Sukach A. and Tkachuk A. InAs infrared photodiodes, In: Advances in Photodiodes. Edited by Gian-Franco Dalla Betta. IntechOpen. 2011. P. 427-446.
https://doi.org/10.5772/14084
16. Biryulin P.V., Turinov V.I., Yakimov E.B. Investigation of characteristics of InSb-based photo-diode linear arrays. Semiconductors. 2004. 38, No 4. P. 488-503. https://doi.org/10.1134/1.1734678.
https://doi.org/10.1134/1.1734678
17. Ando T., Fowler A.B. and Stern F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982. 54. P. 437-672. https://doi.org/10.1103/RevModPhys.54.437.
https://doi.org/10.1103/RevModPhys.54.437
18. Gin A., Wei Y., Hood A., Bajowala A., Yazdan-panah V., and Razeghi M. Ammonium sulfide passivation of type-II InAs-GaSb superlattice photodiodes. Appl. Phys. Lett. 2004. 84, No 12. P. 2037-2039. https://doi.org/10.1063/1.1686894.
https://doi.org/10.1063/1.1686894
19. Shin Mou, Jian V. Li, and Shun Lien Chuang. Surface channel current in InAs/GaSb type-II superlattice photodiodes. J. Appl. Phys. 2007. 102. P. 066103. https://doi.org/10.1063/1.2783767.
https://doi.org/10.1063/1.2783767
20. Odendaal V., Botha J.R., and Aurent F.D. On the processing of InAs and InSb photodiode applications. phys. status solidi (c). 2008. 5, No 2. P. 580-582. https://doi.org/10.1002/pssc.200776821.
https://doi.org/10.1002/pssc.200776821
21. Grinberg A.A., Luryi S., Pinto M.R. and Schryer N.L. Space-charge-limited current in a film. IEEE Trans. Electron. Dev. 1989. 36, No 6. P. 1162-1170. https://doi.org/10.1109/16.24363.
https://doi.org/10.1109/16.24363
22. Talin A.A., Leonard F., Katzenmeyer A.M. et al. Transport characterization in nanowires using an electrical nanoprobe. Semicond. Sci. Technol. 2010. 25. P. 024015. https://doi.org/10.1088/0268-1242/25/2/024015.
https://doi.org/10.1088/0268-1242/25/2/024015
23. Katzenmeyer A.M., Leonard F., Talin A.A. et al. Observation of space-charge-limited transport in InAs nanowires. IEEE Trans. Nanotechnology. 2011. 10, No 1. P. 92-95. https://doi.org/10.1109/TNANO.2010.2062198.
https://doi.org/10.1109/TNANO.2010.2062198