Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 208-213 (2020).
DOI:
https://doi.org/10.15407/spqeo23.02.208
References
1. Sze S.M., Kwok K. Ng. Physics of Semiconductor Devices, Wiley, 2007. https://doi.org/10.1002/0470068329 | | 2. Thompson P.R. and Larason T.C. Method of measuring shunt resistance in photodiodes. Measurement Science Conference, Anaheim, CA, 2001. | | 3. Dongaonkar S., Servaites J.D., Ford G.M. et al. Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 2010. 108. P. 124509. https://doi.org/10.1063/1.3518509. https://doi.org/10.1063/1.3518509 | | 4. Banerjee S. and Anderson W.A. Temperature dependence of shunt resistance in photovoltaic devices. Appl. Phys. Lett. 1986. 49, No 1. P. 38-40. https://doi.org/10.1063/1.97076. https://doi.org/10.1063/1.97076 | | 5. Tobin S.P., Iwasa S., Tredwell T.J. 1/f noise in (Hg, Cd)Te photodiodes. IEEE Trans. Electron. Dev. 1980. ED-27, No 1. P. 43-48. https://doi.org/10.1109/T-ED.1980.19817. https://doi.org/10.1109/T-ED.1980.19817 | | 6. Vishnu Gopal, Sudha Gupta. Temperature dependence of ohmic shunt resistance in mercury cadmium telluride junction diode. Infrared Physics & Technology. 2004. 45. P. 265-271. https://doi.org/10.1016/j.infrared.2003.11.008. https://doi.org/10.1016/j.infrared.2003.11.008 | | 7. Johnson S.M., Rhiger D.R., Rosbeck J.P. et al. Effect of dislocations on the electrical and optical properties of long wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol. B. 1992. 10. P. 1499-1503. https://doi.org/10.1116/1.586278. https://doi.org/10.1116/1.586278 | | 8. Lebedev M.V., Sherstnev V.V., Kunitsyna E.V., Andreev I.A., and Yakovlev Yu.P. Passivation of infrared photodiodes with alcoholic sulfide solution. Semiconductors. 2011. 45, No. 4. P. 526-529. https://doi.org/10.1134/S1063782611040142. https://doi.org/10.1134/S1063782611040142 | | 9. Breitenstein O. Understanding shunting mechanisms in silicon cells: A review. Proc. 17th NREAL workshop on crystalline silicon solar cells and modules: materials and processes. Colorado, August 5-8, 2007. P. 61-70. | | 10. Breitenstein O., Altermatt P., Ramspeck K., Green M.A., Zhao J., Schenk A. Interpretation of the commonly observed IV characteristics of c-Si cells having ideality factor larger than two. IEEE 4th World Conference on Photovoltaic Energy Conference. 1. 2006. P. 879-884. https://doi.org/10.1109/WCPEC.2006.279597. https://doi.org/10.1109/WCPEC.2006.279597 | | 11. Calahorra Z., Bregman J., and Shapira Yoram. Studies of SiOx anodic native oxide interfaces on InSb. J. Vac. Sci. Technol. B. 1986. 4, No 5. P. 1195-1202. https://doi.org/10.1116/1.583483. https://doi.org/10.1116/1.583483 | | 12. Lampert M.A., Mark P. Current Injection in Solids. Academic Press, New York, 1970. | | 13. Kao K.C., Hwang W. Electrical Transport in Solids with Particular Reference to Organic Semiconductors. Pergamon Press, Oxford. 1981. | | 14. Sukach A.V. and Teterkin V.V. Ultrasonic treatment induced modification of the electrical properties of InAs p-n junctions. Techn. Phys. Lett. 2009. 35, No. 6. P. 514-517. https://doi.org/10.1134/S1063785009060108. https://doi.org/10.1134/S1063785009060108 | | 15. Tetyorkin V., Sukach A. and Tkachuk A. InAs infrared photodiodes, In: Advances in Photodiodes. Edited by Gian-Franco Dalla Betta. IntechOpen. 2011. P. 427-446. https://doi.org/10.5772/14084 | | 16. Biryulin P.V., Turinov V.I., Yakimov E.B. Investigation of characteristics of InSb-based photo-diode linear arrays. Semiconductors. 2004. 38, No 4. P. 488-503. https://doi.org/10.1134/1.1734678. https://doi.org/10.1134/1.1734678 | | 17. Ando T., Fowler A.B. and Stern F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982. 54. P. 437-672. https://doi.org/10.1103/RevModPhys.54.437. https://doi.org/10.1103/RevModPhys.54.437 | | 18. Gin A., Wei Y., Hood A., Bajowala A., Yazdan-panah V., and Razeghi M. Ammonium sulfide passivation of type-II InAs-GaSb superlattice photodiodes. Appl. Phys. Lett. 2004. 84, No 12. P. 2037-2039. https://doi.org/10.1063/1.1686894. https://doi.org/10.1063/1.1686894 | | 19. Shin Mou, Jian V. Li, and Shun Lien Chuang. Surface channel current in InAs/GaSb type-II superlattice photodiodes. J. Appl. Phys. 2007. 102. P. 066103. https://doi.org/10.1063/1.2783767. https://doi.org/10.1063/1.2783767 | | 20. Odendaal V., Botha J.R., and Aurent F.D. On the processing of InAs and InSb photodiode applications. phys. status solidi (c). 2008. 5, No 2. P. 580-582. https://doi.org/10.1002/pssc.200776821. https://doi.org/10.1002/pssc.200776821 | | 21. Grinberg A.A., Luryi S., Pinto M.R. and Schryer N.L. Space-charge-limited current in a film. IEEE Trans. Electron. Dev. 1989. 36, No 6. P. 1162-1170. https://doi.org/10.1109/16.24363. https://doi.org/10.1109/16.24363 | | 22. Talin A.A., Leonard F., Katzenmeyer A.M. et al. Transport characterization in nanowires using an electrical nanoprobe. Semicond. Sci. Technol. 2010. 25. P. 024015. https://doi.org/10.1088/0268-1242/25/2/024015. https://doi.org/10.1088/0268-1242/25/2/024015 | | 23. Katzenmeyer A.M., Leonard F., Talin A.A. et al. Observation of space-charge-limited transport in InAs nanowires. IEEE Trans. Nanotechnology. 2011. 10, No 1. P. 92-95. https://doi.org/10.1109/TNANO.2010.2062198. https://doi.org/10.1109/TNANO.2010.2062198 | |
|
|