Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 185-191 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.185


References

1. Rogalski A. Infrared Detectors. CRC Press, Boca Raton, 2011.

2. Kinch M.A. State-of-the-Art Infrared Detector Technology. SPIE Press Book, Bellingham, 2014. https://doi.org/10.1117/3.1002766

3. Sizov F., Zabudsky V., Dvoretskii S. et al. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector. Appl. Phys. Lett. 2015. 106. P. 082104. https://doi.org/10.1063/1.4913590

4. Zabudsky V., Sizov F., Momot N. et al. THz/sub-THz direct detection detector on the basis of electron/hole heating in MCT layers. Semicond. Sci. Technol. 2012. 27, No 4. P. 045002. https://doi.org/10.1088/0268-1242/27/4/045002

5. Dobrovolsky V., Sizov F. THz/sub-THz bolometer based on electron heating in a semiconductor waveguide. Opto-Electron. Rev. 2010. 18. P. 250-258. https://doi.org/10.2478/s11772-010-1033-8

6. Danilov S.N., Wittmann B., Olbrich P. Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures. J. Appl. Phys. 2009. 105. P. 013106. https://doi.org/10.1063/1.3056393

7. Olbrich P., Zoth C., Vierling P. et al. Giant photocurrents in a Dirac fermion system at cyclotron resonance. Phys. Rev. B. 2013. 87, Issue 23. P. 235439. https://doi.org/10.1103/PhysRevB.87.235439

8. Ivchenko E.L. and Ganichev S.D. Spin Photogalvanics. M.I. Dyakonov (Ed.). Spin Physics in Semiconductors. Berlin, Springer, 2017. https://doi.org/10.1007/978-3-319-65436-2_9

9. Ganichev S.D., Ivchenko E.L., Bel'kov V.V. et al. Spin-galvanic effect. Nature. 2002. 417(6885). P. 153-156. https://doi.org/10.1038/417153a

10. Ivchenko E.L., Pikus G.E. Superlattices and other Heterostructures: Symmetry and Optical Phenomena. Berlin, Springer, 1995. https://doi.org/10.1007/978-3-642-97589-9

11. Bychkov Y.A., Rashba E.I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 1984. 17(33). P. 6039. https://doi.org/10.1088/0022-3719/17/33/015

12. Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. B. 1955. 100. P. 580. https://doi.org/10.1103/PhysRev.100.580

13. Ganichev S.D., Golub L.E. Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy - A review. phys. status solidi b. 2014. 251. P. 1801. https://doi.org/10.1002/pssb.201350261

14. Stein D., Klitzing K., Weimann G. Electron spin resonance on GaAs-AlxGa1-xAs heterostructures. Phys. Rev. Lett. 1983. 51. P. 130. https://doi.org/10.1103/PhysRevLett.51.130

15. Lommer G., Malcher F., Rossler U. Spin splitting in semiconductor heterostructures for B>0. Phys. Rev. Lett. 1988. 60. P. 728. https://doi.org/10.1103/PhysRevLett.60.728

16. Mercury Cadmium Telluride: Growth, Properties and Applications. P. Capper, J. Garland (Eds.). Wiley, 2010.

17. Litvinenko K.L., Nikzad L., Pidgeon C.R. et al. Temperature dependence of the electron Lande g factor in InSb and GaAs. Phys. Rev. B. 2008. 77. P. 033204. https://doi.org/10.1103/PhysRevB.77.033204

18. Kim R.S., Narita S. Far-infrared interband magneto-absorption and band structure of Hg1?xCdxTe alloys. phys. status solidi b. 1976. 73. P. 741. https://doi.org/10.1002/pssb.2220730244

19. Bychkov Yu.A., Rashba E.I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984. 39, Issue 2. P. 78-81.

20. Barnes S.E., Ieda J., Maekawa S. Rashba spin-orbit anisotropy and the electric field control of magnetism. Sci. Rep. 2014. 4. P. 4105. https://doi.org/10.1038/srep04105

21. Radantsev V.F., Yafyasov A.M. Rashba splitting in MIS structures HgCdTe. J. Exp. Theor. Phys. 2002. 95. P. 491-501. https://doi.org/10.1134/1.1513822

22. Winkler R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer Tracts in Modern Physics. 191. Springer-Verlag Berlin Heidelberg, 2003. https://doi.org/10.1007/b13586

23. Morrison C., Wisniewski P., Rhead S.D. et al. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas. Appl. Phys. Lett. 2014. 105. P. 182401. https://doi.org/10.1063/1.4901107

24. Yao Q., Cai J., Tong W. et al. Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys. Rev. B. 2017. 95. P. 165401. https://doi.org/10.1103/PhysRevB.95.165401

25. Dvoretsky S.A., Mikhailov N.N., Remesnik V.G. et al. MBE-grown MCT hetero- and nanostructures for IR and THz detectors. Opto-Electron. Rev. 2019. 27. P. 282-290. https://doi.org/10.1016/j.opelre.2019.07.002

26. Stupak M.F., Mikhailov N.N., Dvoretskii S.A. et al. Possibilities of characterizing the crystal parameters of CdxHg1-xTe structures on GaAs substrates by the method of generation of the probe-radiation second harmonic in reflection geometry. Phys. Solid State. 2020. 62. P. 252-259. https://doi.org/10.1134/S1063783420020201

27. Hubmann S., Budkin G.V., Otteneder M. et al. Symmetry breaking and circular photogalvanic effect in epitaxial CdxHg1-xTe films. Phys. Rev. Materials. 2010. 4. P. 043607. https://doi.org/10.1103/PhysRevMaterials.4.043607

28. Bel'kov V.V., Ganichev S.D., Schneider P. et al. Circular photogalvanic effect at inter-band excitation in semiconductor quantum wells. Solid State Commun. 2003. 128. P. 283-286. https://doi.org/10.1016/j.ssc.2003.08.022

29. Shalygin V.A., Moldavskaya M.D., Danilov S.N. et al. Circular photon drag effect in bulk tellurium. Phys. Rev. B. 2016. 93. P. 045207. https://doi.org/10.1103/PhysRevB.93.045207

30. Bel'kov V.V., Ganichev S.D., Ivchenko E.L. et al. Magneto-gyrotropic photogalvanic effects in semiconductor quantum wells J. Phys. Cond. Matt. 2005. 17. P. 3405. https://doi.org/10.1088/0953-8984/17/21/032