Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 192-199 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.192
References
1. Vurgaftman I. & Meyer J.R. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003. 94. P. 3675-3696.
https://doi.org/10.1063/1.1600519
2. Nakamura S. III-V nitride based light-emitting devices. Solid State Commun. 1997. 102. P. 237-248.
https://doi.org/10.1016/S0038-1098(96)00722-3
3. Routray S.R. & Lenka T.R. InGaN-based solar cells: a wide solar spectrum harvesting technology for twenty-first century. CSI Trans. ICT. 2018. 6. P. 83-96.
https://doi.org/10.1007/s40012-017-0181-9
4. Farahmand M. Garetto C., Bellotti E. et al. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices. 2001. 48. P. 535-542.
https://doi.org/10.1109/16.906448
5. Hoshino T. & Mori N. Electron mobility calculation for two-dimensional electron gas in InN/GaN digital alloy channel high electron mobility transistors. Jpn. J. Appl. Phys. 2019. 58. SCCD10.
https://doi.org/10.7567/1347-4065/ab0409
6. Askari M., Abadi V.M.M., Mirhabibi M. Types of solar cells and application. Amer. J. Opt. Photon. 2015. 3. P. 94-113.
https://doi.org/10.11648/j.ajop.20150305.17
7. Rao S., Morankar A., Verma H., Goswami P. Emerging photovoltaics: Organic, copper zinc tin sulphide, and perovskite-based solar cells. J. Appl. Chem. 2016. 2016. Article ID 3971579.
https://doi.org/10.1155/2016/3971579
8. Huang X., Li W., Fu H. et al. High-temperature po-larization-free III-nitride solar cells with self-cooling effects. ACS Photonics. 2019. 6. P. 2096-2103.
https://doi.org/10.1021/acsphotonics.9b00655
9. Yeh M.-Y., Lei P.-H., Lin S.-H., Yang C.-D. Copper-zinc-tin-sulfur thin film using spin-coating technology. Materials. 2016. 9. P. 526.
https://doi.org/10.3390/ma9070526
10. Cho H.K., Lee J.Y., Yang G.M., Kim C.S. Forma-tion mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density. Appl. Phys. Lett. 2001. 79. P. 215-217.
https://doi.org/10.1063/1.1384906
11. Cho H.K., Lee J.Y., Kim C.S., Yang G.M. Influence of strain relaxation on structural and optical characteristics of InGaN/GaN multiple quantum wells with high indium composition. J. Appl. Phys. 2002. 91. P. 1166-1170.
https://doi.org/10.1063/1.1429765
12. Cherns D., Henley S.J., Ponce F. Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence. Appl. Phys. Lett. 2001. 78. P. 2691-2693.
https://doi.org/10.1063/1.1369610
13. Bernardini F., Fiorentini V., Vanderbilt D. Sponta-neous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B. 1997. 56. P. R10024-R10027.
https://doi.org/10.1103/PhysRevB.56.R10024
14. Chang, J.-Y. & Kuo, Y.-K. Simulation of N-face InGaN-based p-i-n solar cells. J. Appl. Phys. 2012. 112. P. 033109.
https://doi.org/10.1063/1.4745043
15. Chang J.-Y., Liou B.-T., Lin H.-W. et al. Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN p-i-n solar cells with polarization compensation interlayers. Opt. Lett. 2011. 36. P. 3500-3502.
https://doi.org/10.1364/OL.36.003500
16. Li Y., You S., Zhu M. et al. Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 2011. 98. P. 151102.
https://doi.org/10.1063/1.3579255
17. Dahal R., Pantha B., Li J., Lin J.Y., Jiang H.X. InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Appl. Phys. Lett. 2009. 94. P. 063505.
https://doi.org/10.1063/1.3081123
18. Yang C.C., Sheu J.K., Liang Xin-Wei et al. Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers. Appl. Phys. Lett. 2010. 97. P. 021113.
https://doi.org/10.1063/1.3463469
19. Barnett A., Kirkpatrick D., Honsberg C. et al. Very high efficiency solar cell modules. Progress in Photovoltaics. 2009. 17. P. 75-83.
20. Toledo N.G., Friedman D.J., Farrell R.M. et al. Design of integrated III-nitride/non-III-nitride tandem photovoltaic devices. J. Appl. Phys. 2012. 111. P. 054503.
https://doi.org/10.1063/1.3690907
21. Movla H., Salami D., Sadreddini S.V. Simulation analysis of the effects of defect density on the performance of p-i-n InGaN solar cell. Appl. Phys. A. 2012. 109. P. 497-502.
https://doi.org/10.1007/s00339-012-7062-8
22. Chen X., Matthews K.D., Hao D. et al. Growth, fabrication, and characterization of InGaN solar cells. phys. status solidi (a). 2008. 205. P. 1103-1105.
https://doi.org/10.1002/pssa.200778695
23. Valdueza-Felip S., Ajay A., Redaelli L. et al. P-i-n InGaN homojunctions (10-40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm. Solar Energy Materials and Solar Cells. 2016. 160. P. 355-360.
https://doi.org/10.1016/j.solmat.2016.10.007
24. Cai X.-M., Zeng S.-W., Zhang B.-P. Fabrication and characterization of InGaN p-i-n homojunction solar cell. Appl. Phys. Lett. 2009. 95. P. 173504.
https://doi.org/10.1063/1.3254215
25. Niemegeers A., Burgelman M., Decock K. et al. Simulation programme SCAPS-1D for thin film solar cells. Department of Electronics and Information Systems (ELIS) of the University of Gent, Belgium, 2020. http://scaps.elis.ugent.be/.
26. Piprek J. Semiconductor Optoelectronic Device: Introduction to Physics and Simulation. Academic Press, 2003. P. 61-66.
https://doi.org/10.1016/B978-0-08-046978-2.50026-0
27. Fabien C.A.M., Doolittle W.A. Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells. Solar Energy Materials and Solar Cells. 2014. 130. P. 354-363.
https://doi.org/10.1016/j.solmat.2014.07.018
28. Hsu L., Walukiewicz W. Modeling of InGaN/Si tandem solar cells. J. Appl. Phys. 2008. 104. P. 024507.
https://doi.org/10.1063/1.2952031
29. Shen Y.C., Mueller G.O., Watanabe S. et al. Auger recombination in InGaN measured by photo-luminescence. Appl. Phys. Lett. 2007. 91. P. 141101.
https://doi.org/10.1063/1.2785135
30. Van de Walle C.G. & Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004. 95. P. 3851-3879.
https://doi.org/10.1063/1.1682673
| |
|
|