Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 210-217 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.210


References

1. Murthy H.S.V., Sharma A.K., Badarinarayana K. and Lakshminarasimhan P. Thermal management of GEO satellite communication payload. 2011 IEEE International Vacuum Electronics Conference (IVEC), Bangalore, India, 2011. P. 469-470. https://doi.org/10.1109/IVEC.2011.5747079

2. Gaska R., Osinsky A., Yang J.W. and Shur M.S. Self-heating in high-power AlGaN-GaN HFETs. IEEE Electron Device Lett. 1998. 19, No 3. P. 89-91. https://doi.org/10.1109/55.661174

3. Dambrine G., Cappy A., Heliodore F. and Playez E. A new method for determining the FET small-signal equivalent circuit. IEEE Transactions on Microwave Theory and Techniques. 1988. 36, No 7. P. 1151-1159. https://doi.org/10.1109/22.3650

4. Wang X., Hu W., Chen X. and Lu W. The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans. Electron Devices. 2012. 59, No 5. P. 1393-1401. https://doi.org/10.1109/TED.2012.2188634

5. Prasad A., Fager C., Thorsell M., Andersson C.M. and Yhland K. Symmetrical large-signal modeling of microwave switch FETs. IEEE Trans. Microwave Theory and Techniques. 2014. 62, No 8. P. 1590-1598. https://doi.org/10.1109/TMTT.2014.2332303

6. van Niekerk C., Meyer P., Schreurs D.M.M.-P. and Winson P.B. A robust integrated multibias parameter-extraction method for MESFET and HEMT models. IEEE Trans. Microwave Theory and Techniques. 2000. 48, No 5. P. 777-786. https://doi.org/10.1109/22.841871

7. Lhortolary J. Predictive model of HEMT transistor for precise simulation of intermodulation at very low power levels and at high frequencies. Evaluation of the linearity performance of various pHEMT AsGa technologies. University of Limoges, Doctoral School of Science Technologies Health, 2007.

8. Menozzi R. and Piazzi A. HEMT and HBT small-signal model optimization using a genetic algorithm. IEEE MTT/ED/AP/LEO Societies Joint Chapter United Kingdom and Republic of Ireland Section. 1997 Workshop on High Performance Ele-ctron Devices for Microwave and Optoelectronic Applications. EDMO. London, UK, 1997. P. 13-18.

9. Miras A. and Legros E. Very high-frequency small-signal equivalent circuit for short gate-length InP HEMTs. IEEE Trans. Microwave Theory and Techniques. 1997. 45, No 7. P. 1018-1026. https://doi.org/10.1109/22.598436

10. Birafane A., Aflaki P., Kouki A.B., Ghannouchi F.M. Enhanced DC model for GaN HEMT transistors with built-in thermal and trapping effects. Solid-State Electronics. 2012. 76. P. 77-83. https://doi.org/10.1016/j.sse.2012.05.041

11. Prasad A., Thorsell M., Zirath H. and Fager C. Accurate modeling of GaN HEMT RF behavior using an effective trapping potential. IEEE Trans. Microwave Theory and Techniques. 2018. 66, No 2. P. 845-857. https://doi.org/10.1109/TMTT.2017.2748950

12. Gibiino G.P., Santarelli A. and Filicori F. A GaN HEMT global large-signal model including charge trapping for multibias operation. IEEE Trans. Microwave Theory and Techniques. 2018. 66, No 11. P. 4684-4697. https://doi.org/10.1109/TMTT.2018.2857830

13. Lee J.-W. and Webb K.J. A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC. IEEE Trans. Microwave Theory and Techniques. 2004. 52, No 1. P. 2-9. https://doi.org/10.1109/TMTT.2003.821227

14. van Raay F., Quay R., Kiefer R., Schlechtweg M. and Weimann G. Large signal modeling of AlGaN/GaN HEMTs with Psat > 4 W/mm at 30 GHz suitable for broadband power applications. IEEE MTT-S Intern. Microwave Symposium Digest, 2003. 1. P. 451-454. Philadelphia, PA, USA. https://doi.org/10.1109/MWSYM.2003.1210973

15. Jarndal A. and Kompa G. Large-signal model for AlGaN/GaN HEMTs accurately predicts trapping- and self-heating-induced dispersion and intermodulation distortion. IEEE Trans. Electron Devices. 2007. 54, No 11. P. 2830-2836. https://doi.org/10.1109/TED.2007.907143

16. Greco G., Iucolano F., Roccaforte F. Review of technology for normally-off HEMTs with p-GaN gate. Wide band gap semiconductors technology for next generation of energy efficient power electronics. Eds F. Roccaforte, G. Philippe, G. Impellizzeri. Mater. Sci. in Semiconductor Proc. 2018. 78. P. 96-106. https://doi.org/10.1016/j.mssp.2017.09.027

17. Jessen G.H., Fitch R.C., Gillespie J.K. et al. Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices. IEEE Trans. Electron Devices. 2007. 54, No 10. P. 2589-2597. https://doi.org/10.1109/TED.2007.904476

18. Guerra D., Saraniti M., Ferry D.K., Goodnick S.M. and Marino F.A. Carrier dynamics investigation on passivation dielectric constant and RF performance of millimeter-wave power GaN HEMTs. IEEE Trans. Electron Devices. 2011. 58, No 11. P. 3876-3884. https://doi.org/10.1109/TED.2011.2164407

19. Wu Y.-F., Saxler A.W., Moore M.L. et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 2004. 25, No 3. P. 117-119. https://doi.org/10.1109/LED.2003.822667

20. Kourdi Z., Bouazza B., Guen-Bouazza A., Khaouani M. Side effects in InAlN/GaN high electron mobility transistors. Microelectron. Eng. 2015. 142. P. 52-57. https://doi.org/10.1016/j.mee.2015.07.003

21. Weimann N.G., Manfra M.J., Hsu J.W.P. et al. AlGaN/GaN HEMTs grown by molecular beam epitaxy on sapphire, SiC, and HVPE GaN templates. IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA, 2002. P. 126-133.

22. Fujishiro H.I., Mikami N., Hatakenaka M. Monte Carlo study of self-heating effect in GaN/AlGaN HEMTs on sapphire, SiC and Si substrates. phys. status solidi (c). 2005. 7. P. 2696-2699. https://doi.org/10.1002/pssc.200461342

23. Kohn E. and Medjdoub F. InAlN - A new barrier material for GaN-based HEMTs. 2007 Intern. Workshop on Physics of Semiconductor Devices, Mumbai, India, 2007. P. 311-316. https://doi.org/10.1109/IWPSD.2007.4472506

24. Gassoumi M., Helali A., Maaref H., Gassoumi M. DC and RF characteristics optimization of AlGaN/GaN/BGaN/GaN/Si HEMT for microwave-power and high temperature application. Results in Physics. 2019. 12. P. 302-306. https://doi.org/10.1016/j.rinp.2018.11.063

25. Perez-Tomas A., Fontsere A., Jennings M.R., Gammon P.M. Modeling the effect of thin gate insulators (SiO2, SiN, Al2O3 and HfO2) on AlGaN/GaN HEMT forward characteristics grown on Si, sapphire and SiC. Mater. Sci. in Semi-conductor Proc. 2013. 16, Issue 5. P. 1336-1345. https://doi.org/10.1016/j.mssp.2012.10.014

26. Nishiguchi K., Kaneki S., Ozaki S. and Hashizume T. Current linearity and operation stability in Al2O3-gate AlGaN/GaN MOS high electron mobility transistors. Jpn. J. Appl. Phys. 2017. 56, No 10. P. 101001. https://doi.org/10.7567/JJAP.56.101001

27. Ozaki S., Makiyama K., Ohki T. et al. Improved DC performance and current stability of ultrathin-Al2O3/InAlN/GaN MOS-HEMTs with post-metallization-annealing process. Semicond. Sci. Technol. 2020. 35, No 3. P. 035027. https://doi.org/10.1088/1361-6641/ab708c

28. Gangwani P., Kaur R., Pandey S. et al. Modeling and analysis of fully strained and partially relaxed lattice mismatched AlGaN/GaN HEMT for high temperature applications. Superlattices and Microstructures. 2008. 44, Issue 6. P. 781-793. https://doi.org/10.1016/j.spmi.2008.07.004

29. Cozette F., Lesecq M., Cutivet A. et al. Resistive nickel temperature sensor integrated into short-gate length AlGaN/GaN HEMT dedicated to RF applications. IEEE Electron Device Lett. 2018. 39, No 10. P. 1560-1563. https://doi.org/10.1109/LED.2018.2864643

30. Alim M.A., Hasan M.A., Rezazadeh A.A. et al. Multibias and temperature dependence of the current-gain peak in GaN HEMT. Int. J. RF Microwave Computer - Aided Eng. 2020. 30, No 4. https://doi.org/10.1002/mmce.22129

31. Nonlinear Transistor Model Parameter Extraction Techniques. Eds M. Rudolph, C. Fager, D.E. Root. Cambridge University Press, 2011.