Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 137-145 (2022).
DOI: https://doi.org/10.15407/spqeo25.02.137


References

1. Guth U. Mixed Conductors, Determination of Electronic and Ionic Conductivity (Transport Numbers). In: Encyclopedia of Applied Electro-chemistry, Editors: G. Kreysa, K. Ota, R.F. Savinell. Springer, New York, NY, 2014. https://doi.org/10.1007/978-1-4419-6996-5_313

2. Covington A.K. and Sibbald A. Ion-selective field-effect transistors (ISFETS). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1987. 316, No 1176. P. 31-46. https://doi.org/10.1098/rstb.1987.0015

3. Fakih I., Durnan O., Mahvash F. et al. Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 2020. 11. P. 3226. https://doi.org/10.1038/s41467-020-16979-y

4. Artigas J., Beltran A., Jimenez C. et al. Application of ion sensitive field effect transistor based sensors to soil analysis. Computers and Electronics in Agriculture. 2001. 31, No 3. P. 281-293. https://doi.org/10.1016/S0168-1699(00)00187-3

5. Hong J.G., Gao H., Lan Gan et al. Chapter 13 - Nanocomposite and nanostructured ion-exchange membrane in salinity gradient power generation using reverse electrodialysis. Editors: W.-J. Lau, A.F. Ismail, A. Isloor, A. Al-Ahmed, In: Micro and Nano Technologies, Advanced Nanomaterials for Membrane Synthesis and its Applications, Elsevier, 2019. P. 295-316. https://doi.org/10.1016/B978-0-12-814503-6.00013-6

6. Maksymiuk K., Stelmach E. and Michalska A. Review. Unintended changes of ion-selective membranes composition - origin and effect on analytical performance. Membranes. 2020. 10. P. 266. https://doi.org/10.3390/membranes10100266

7. Tanaka Y. Ion-exchange Membranes: Funda-mentals and Applications. 2nd ed. Amsterdam: Elsevier, 2015.

8. Strathmann H. Ion-exchange Membrane Separation Process. Amsterdam: Elsevier, 2004.

9. Garcia A.A.R., Leron Rh.B., Soriano A.N., Li M.-H. Thermophysical property characterization of aqueous amino acid salt solutions containing a-aminobutyric acid. J. Chem. Thermodyn. 2015. 8. P. 136-142. https://doi.org/10.1016/j.jct.2014.10.005

10. Zabolotsky V.I., Nikonenko V.V. Effect of structural membrane inhomogeneity on transport properties. J. Membrane Sci. 1993. 79. P. 181-198. https://doi.org/10.1016/0376-7388(93)85115-D

11. Parnamae R., Mareev S., Nikonenko V. et al. Bipolar membranes: A review on principles, latest developments, and applications. J. Membrane Sci. 2021. 617. P. 118538. https://doi.org/10.1016/j.memsci.2020.118538

12. Luo T., Abdu S., Wessling M. Selectivity of ion exchange membranes: A review. J. Membrane Sci. 2018. 555. P. 429-454. https://doi.org/10.1016/j.memsci.2018.03.051

13. Alabi A., AlHajaj A., Cseri L. et al. Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water. 2018. 1. P. 10. https://doi.org/10.1038/s41545-018-0009-7

14. Maurya S., Shin S.-H., Kim Y., Moon S.-H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv. 2015. 5. P. 37206-37230. https://doi.org/10.1039/C5RA04741B

15. Crothers A.R., Darling R.M., Kusoglu A. et al. Theory of multicomponent phenomena in cation-exchange membranes: Part II. Transport model and validation. J. Electrochem. Soc. 2020. 167, No 1. P. 013548. https://doi.org/10.1149/1945-7111/ab6724

16. Ellatar A., Elmidaoui A., Pismenskaia N. et al. Comparison of transport properties of monovalent anions through anion-exchange membranes. J. Membrane Sci. 1998. 143. P. 249-261. https://doi.org/10.1016/S0376-7388(98)00013-1

17. Bacherikov Yu.Yu., Gilchuk A.V., Zhuk A.G. et al. Nonmonotonic behavior of luminescence characteristics of fine-dispersed self-propagating high-temperature synthesized ZnS:Mn depending on size of its particles. J. Lumin. 2018. 194. P. 8-14. https://doi.org/10.1016/j.jlumin.2017.09.010

18. Bacherikov Yu.Yu., Lytvyn P.M., Okhrimenko O.B. et al. Surface potential of meso-dimensional ZnS:Mn particles obtained using SHS method. J. Nanopart. Res. 2018. 20, No 12. Article 316. https://doi.org/10.1007/s11051-018-4413-1

19. Pismenskaya N., Laktionov E., Nikonenko V. et al. Dependence of composition of anion-exchange membranes and their electrical conductivity on concentration of sodium salts of carbonic and phosphoric acids. J. Membrane Sci. 2001. 181. P. 185-197. https://doi.org/10.1016/S0376-7388(00)00529-9

20. Marti-Calatayud M.C., Garcia-Gabaldon M., Perez-Herranz V. Mass transfer phenomena during electrodialysis of multivalent ions: Chemical equilibria and overlimiting currents. Appl. Sci. 2018. 8. P. 1566. https://doi.org/10.3390/app8091566

21. Hosseini S.M., Madaeni S.S., Khodabakhshi A.R. The electrochemical characterization of ion exchange membranes in different electrolytic environments: Investigation of concentration and pH effects. Separation Science and Technology. 2012. 47, No 3. P. 455-462. https://doi.org/10.1080/01496395.2011.615046

22. Stenina I., Golubenko D., Nikonenko V. and Yaroslavtsev A. Review. Selectivity of transport processes in ion-exchange membranes: Relationship with the structure and methods for its improvement. Int. J. Mol. Sci. 2020. 21. P. 5517. https://doi.org/10.3390/ijms21155517

23. Bishop G.W., Lopez M.M., Rajasekaran P.R. et al. Electroosmotic flow rectification in membranes with asymmetrically shaped pores: Effects of current and pore density. J. Phys. Chem. C. 2015. 119, No 29. P.16633-16638. https://doi.org/10.1021/acs.jpcc.5b03510

24. Lan W.-J., Edwards M.A., Luo L. et al. Voltage-rectified current and fluid flow in conical nano-pores. Acc. Chem. Res. 2016. 49, No 11. P. 2605-2613. https://doi.org/10.1021/acs.accounts.6b00395

25. Vlassiouk I. and Siwy Z.S. Nanofluidic diode. Nano Lett. 2007. 7, No 3. P. 552-556. https://doi.org/10.1021/nl062924b

26. Parnamae R., Gurreri L., Post J., et al. The acid-base flow battery: Sustainable energy storage via reversible water dissociation with bipolar membranes. Membranes. 2020. 10, No 12. P. 409. https://doi.org/10.3390/membranes10120409

27. Tulachan B., Meena S., Rai R. et al. Electricity from the silk cocoon membrane. Sci. Rep. 2014. 4. P. 5434. https://doi.org/10.1038/srep05434

28. Kravets L.I., Dmitriev S.N., Satulu V. et al. Formation of composite polymer 'diode-like' membranes. Romanian Rep. Phys. 2014. 66, No 4. P. 1165-1179.

29. Bacherikov Y.Y., Lytvyn P.M., Mamykin S.V. et al. Current transfer processes in a hydrated layer localized in a two-layer porous structure of nanosized ZrO2. J. Mater. Sci.: Mater. Electron. 2022. 33. P. 2753-2764. https://doi.org/10.1007/s10854-021-07481-2

30. Weyl W.A. Effect of the environment upon the properties of solids. In: Solid Surfaces and the Gas-Solid Interface. Eds: L.E. Copeland, R.A. Beebe, D.P. Graham et al. Adv. in Chem. 1961. 33. P. 72-85. https://doi.org/10.1021/ba-1961-0033.ch010

31. Meng F., Gala U. & Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Development and Industrial Pharmacy. 2015. 41, No 9. P. 1401-1415. https://doi.org/10.3109/03639045.2015.1018274

32. Posada-Perez S., Hautier G., Rignanese G.-M. Effect of aqueous electrolytes on LiCoO2 surfaces: Role of proton adsorption on oxygen vacancy formation. J. Phys. Chem. C. 2022. 126, No 1. P. 110-119. https://doi.org/10.1021/acs.jpcc.1c09348

33. Arano K., Begic S., Chen F. et al. Tuning the forma-tion and structure of the silicon electrode/ionic liquid electrolyte interphase in superconcentrated ionic liquids. ACS Applied Materials & Interfaces, Washington, D.C.: Am. Chem. Soc. 2021. 13, No 24. P. 28281-28294. https://doi.org/10.1021/acsami.1c06465

34. Steinruck H.-G., Cao C., Tsao Y. et al. The nanoscale structure of the electrolyte-metal oxide interface. Energy Environ. Sci. 2018. 11. P. 996-996. https://doi.org/10.1039/C8EE90018C

35. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014. 114, No 23. P. 11503-11618. https://doi.org/10.1021/cr500003w

36. Vatamanu J., Vatamanu M., Borodin O. and Bedrov D. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. J. Phys.: Condensed Matter. 2016. 28. P.464002. https://doi.org/10.1088/0953-8984/28/46/464002

37. Vatamanu J., Borodin O., Olguin M. et al. Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. J. Mater. Chem. A. 2017. 5. P. 21049-21076. https://doi.org/10.1039/C7TA05153K

38. Xing L., Vatamanu J., Borodin O. et al. Electrode/ electrolyte interface in sulfolane-based electrolytes for Li ion batteries: A molecular dynamics simula-tion study. J. Phys. Chem. C. 2012. 116. P. 23871- 23881. https://doi.org/10.1021/jp3054179

39. Bacherikov Yu.Yu., Indutnyi I.Z., Maidanchuk I.Yu. et al. Formation of nano-structured CdSe composites in porous SiOx layers. Ukr. J. Phys. 2010. 55, No 7. P. 817-821.

40. Bacherikov Y.Y., Indutnyi I.Z., Okhrimenko O.B. et al. Distribution of CdSe nanoparticles synthe-sized in porous SiOx matrix. Semiconductors. 2011. 45. P. 1189. https://doi.org/10.1134/S1063782611090028

41. Li Vage J., Doi K., Maziers C. Nature and thermal evolution of amorphous hvdrated zirconium oxide. J. Am. Ceram. Soc. 1968. 51, No 6. P. 349-353. https://doi.org/10.1111/j.1151-2916.1968.tb15952.x

42. Bacherikov Yu.Yu., Okhrimenko O.B., Goroneskul V.Yu. et al. The model of potential barrier appearing in a hydrolayer localized in a two-layer porous nanostructure. SPQEO. 2021. 24, No 3. P. 288-294. https://doi.org/10.15407/spqeo24.03.288

43. Shen D., Duley W.W., Peng P. et al. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020. 32. P. 52. https://doi.org/10.1002/adma.202003722

44. Zhang Y., Nandakumar D.K., Tan S.C. Digestion of ambient humidity for energy generation. Joule. 2020. 4, No 12. P. 2532-2536. https://doi.org/10.1016/j.joule.2020.10.003

45. Liu X., Gao H., Ward J.E. et al. Power generation from ambient humidity using protein nanowires. Nature. 2020. 578. P. 550-554. https://doi.org/10.1038/s41586-020-2010-9

46. Sun Z., Wen X., Wang L. et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience. 2022. 2, No 1. P. 32-46. https://doi.org/10.1016/j.esci.2021.12.009

47. Yang L., Nandakumar D.K., Miao L. et al. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule. 2020. 4, No 1. P. 176-188. https://doi.org/10.1016/j.joule.2019.10.008