Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 164-172(2022).
DOI: https://doi.org/10.15407/spqeo25.02.164
References
1. Moulla F., Chekirou W., Karaali A. et al. Solid state synthesis and spectroscopic analysis of CuAlO2 and spinel CuAl2O4. Phase Transitions. 2020. 93, No 8. P. 813-825.
https://doi.org/10.1080/01411594.2020.1789919
2. Aguilar C.G., Moreno C.E. Effect of calcination temperature on structure and thermoelectric properties of CuAlO2 powders. J. Mater. Sci. 2018. 53. P. 1646-1657.
https://doi.org/10.1007/s10853-017-1602-8
3. Sanchez-Trinidad C., Angel G., Torres-Torres G. et al. Effect of the CuAl2O4 and CuAlO2 phases in catalytic wet air oxidation of ETBE and TAME using CuO/?-Al2O3 catalysts. Chemistry Open. 2019. 8. P. 1143-1150.
https://doi.org/10.1002/open.201900080
4. Castillo-Hernandez G., Mayen-Hernandez S., Castano-Tostado E. et al. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition. Res. Phys. 2018. 9. P. 745-752.
https://doi.org/10.1016/j.rinp.2018.03.046
5. Zhang Y., Liu Z., Zang D., Feng L. Structural and opto-electrical properties of Cu-Al-O thin films prepared by magnetron sputtering method. Vacuum. 2014. 99. P. 160-165.
https://doi.org/10.1016/j.vacuum.2013.05.019
6. Weizhong L., Liu B., Qiu Q., Wang F., Luo Z., Zhang P., Wei Sh. Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method. J. Alloys & Compounds. 2009. 479. P. 480-483.
https://doi.org/10.1016/j.jallcom.2008.12.111
7. Golka K., Kopps S., Myslak Z.W. Carcinogenicity of azo colorants: Influence of solubility and bioavailability. Toxicol. Lett. 2004. 151. P. 203-210.
https://doi.org/10.1016/j.toxlet.2003.11.016
8. Lee J.C., Um S.Y., Heo Y.W. et al. Phase development and crystallization of CuAlO2 thin films prepared by pulsed laser deposition. J. Europ. Ceram. Soc. 2010. 30, No 2. P. 509-512.
https://doi.org/10.1016/j.jeurceramsoc.2009.05.025
9. Wang Y., Gong H., Zhu F., Liu L., Huang L., Huan A.C.H. Optical and electrical properties of p-type transparent conducting Cu-Al-O thin films prepared by plasma enhanced chemical vapor deposition. Mater. Sci. and Eng. B: Solid-State Materials for Advanced Technol. 2001. 85, No 2-3. P. 131-134.
https://doi.org/10.1016/S0921-5107(01)00545-1
10. Gong H., Wang Y., Luo Y. Nanocrystalline p-type transparent Cu-Al-O semiconductor prepared by che-mical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors. Appl. Phys. Lett. 2000. 76, No 26. P. 3959-3961.
https://doi.org/10.1063/1.126834
11. Ren Y., Zhao G., Zhang C., Chen Y. Preparation of CuAlO2 thin films with high transparency and low resistivity using sol-gel method. J. Sol-Gel. Sci. Technol. 2012. 61, No 3. P. 565-569.
https://doi.org/10.1007/s10971-011-2660-z
12. Chiu S.H., Huang J.C.A. Characterization of p-type CuAlO2 thin films grown by chemical solution deposition. Surface & Coatings Technol. 2013. 231. P. 239-242.
https://doi.org/10.1016/j.surfcoat.2012.03.003
13. Ievtushenko A.I., Dusheyko M.G., Karpyna V.A. et al. The influence of substrate temperature on properties of Cu-Al-O films deposited using the reactive ion beam sputtering method. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. 20, No 3. P. 314-318.
https://doi.org/10.15407/spqeo20.03.314
14. Al-Qaradawi S., Salman S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A: Chem. 2002. 148, No 1. P. 161-168.
https://doi.org/10.1016/S1010-6030(02)00086-2
15. Jacob K., Alcock C.B. Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3. J Am. Ceramic Soc. 1975. 58. P. 192-195.
https://doi.org/10.1111/j.1151-2916.1975.tb11441.x
16. Menon S.G., Kulkarni S.D., Choudhari K.S. and Santhosh C. Diffusion-controlled growth of CuAl2O4 nanoparticles: Effect of sintering and photodegradation of methyl orange. J. Experim. Nanosci. 2016. 11, No 15. P. 1227-1241.
https://doi.org/10.1080/17458080.2016.1209585
17. Liu Y., Qing Sh., Hou X. et al. Synthesis and structural characterization of CuAl2O4 spinel with an unusual cation distribution. J. Mater. & Appl. 2018. 7, No 2. P. 82-89.
18. Yanyan J., Jinggang L., Xiaotao S. et al. CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. J. Sol-Gel Sci. Techn. 2007. 42. P. 41-45.
https://doi.org/10.1007/s10971-006-1525-3
19. Ievtushenko A., Tkach V., Strelchuk V. et al. Solar explosive evaporation growth of ZnO nano-structures. Appl. Sci. 2017. 7, No 4. P. 383-391.
https://doi.org/10.3390/app7040383
20. Hassanzadeh-Tabrizi S.A., Pournajaf R., Moradi-Faradonbeh A., Sadeghinejad S. Nanostructured CuAl2O4: Co-precipitation synthesis, optical and photocatalytic properties. Ceram. Int. 2016. 42, No 12. P. 14121-14125.
https://doi.org/10.1016/j.ceramint.2016.06.026
21. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. 6th Edition. John Wiley & Sons, Inc., 2009.
22. Shokri B., Abbasi-Firouzjah M., Hosseini S.I. FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. Proc. 19-th Intern. Symp. on Plasma Chem. Soc. 2009. 2631. P. 26-30.
23. Litvinchuk A.P., Moller A., Debbichi L., Kruger P., Iliev M.N. and Gospodinov M.M. Second-order Raman scattering in CuO. J. Phys.: Condens. Matter. 2013. 25. P. 105402-105406.
https://doi.org/10.1088/0953-8984/25/10/105402
24. Xu J.F., Ji W., Shen Z.X. et al. Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 1999. 30. P. 413-415.
https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N
25. Shih P.H., Cheng C.L., Wu S.Y. Short-range spin-phonon coupling in in-plane CuO nanowires: A low-temperature Raman investigation. Nanoscale Res. Lett. 2013. 8, No 1. P. 2-6.
https://doi.org/10.1186/1556-276X-8-398
26. Chen X.K., Irwin J.C., Franck J.P. Evidence for a strong spin-phonon interaction in cupric oxide. Phys. Rev. B. 1995. 52, No 18. P. 13130-13133. https://doi.org/10.1103/PhysRevB.52.R13130
27. Ghanti E., Nagarajan R. Synthesis of CuAl2(acac)4(OiPr)4, its hydrolysis and formation of bulk CuAl2O4 from the hydrolyzed gels; a case study of molecules to materials. Dalton Trans. 2010. 39, No 26. P. 6056-6061. https://doi.org/10.1039/b926579a
28. Kreisel H., Lucazeau G., Vincent H. Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite. J. Solid State Chem. 1998. 137, No 1. P. 127-137. https://doi.org/10.1006/jssc.1997.7737
29. Tomar N., Ghanti E., Bhagi A.K., Nagarajan R. Studies on the hydrolysis of {Cu[Al(OPri)4]2}, a single source precursor for CuAl2O4 spinel. J. Non-Crystal. Solids. 2009. 355 (s52-54). P. 2657-2662. https://doi.org/10.1016/j.jnoncrysol.2009.08.026
30. He Y., Grieser F., Ashokkumar M. The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrasonics Sonochemistry. 2011. 18, No 5. P. 974-980. https://doi.org/10.1016/j.ultsonch.2011.03.017
31. Menon G.S., Kulkarni D.S., Choudhari K.S., Santhosh C. Diffusion-controlled growth of CuAl2O4 nanoparticles: Effect of sintering and photo-degradation of methyl orange. J. Experim. Nanosci. 2016. 11, No 15. P. 1227-1241. https://doi.org/10.1080/17458080.2016.1209585
32. Ahmad M., Ahmed E., Zhang Y. et al. Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 2013. 13. P. 697-704. https://doi.org/10.1016/j.cap.2012.11.008
33. Yang G., Xiao T., Sloan J., Li G., Yan Z. Low-temperature synthesis of visible-light active fluorine/sulfur co-doped mesoporous TiO2 micro-spheres. Chemistry. 2011. 17, No 4. P. 1096-1100. https://doi.org/10.1002/chem.201001676
| |
|
|