Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 185-195(2022).
DOI: https://doi.org/10.15407/spqeo25.02.185


References

1. Jeevanandam J., Barhoum A., Yen S.C., Dufresne A., and Danquah M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018. 9. P. 1050-1074. https://doi.org/10.3762/bjnano.9.98

2. Aldea A., Barsan V. (Eds.). Trends in Nanophysics, Theory, Experiment and Technology. Springer-Verlag, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-12070-1

3. Sattler K.D. (Ed.). Handbook of Nanophysics: Nanoparticles and Quantum Dots. Boca Raton, CRC Press, 2016.

4. Soares S., Sousa J., Pais A. and Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 2018. 6. P. 360. https://doi.org/10.3389/fchem.2018.00360

5. Nagy J.A., Chang S-H., Dvorak A.M. and Dvorak H.F. Why are tumor blood vessels abnormal and why is it important to know? British Journal of Cancer. 2009. 100. P. 865-869. https://doi.org/10.1038/sj.bjc.6604929

6. Grebenik E.A., Generalova A.N., Nechaev A.V. et al. Specific visualization of tumor cells using upconversion nanophosphors. Acta Naturae. 2014. 6, Issue 4. P. 48-53. https://doi.org/10.32607/20758251-2014-6-4-48-53

7. Sobral-Filho R.G., DeVorkin L., Macpherson S. et al. Ex vivo detection of circulating tumor cells from whole blood by direct nanoparticle visua-lization. ACS Nano. 2018. 12, Issue 2. P. 1902-1909. https://doi.org/10.1021/acsnano.7b08813

8. Cheng Z., Yan X., Sun X. et al. Tumor molecular imaging with nanoparticles. Eng. 2016. 2, No 1. P. 132-140. https://doi.org/10.1016/J.ENG.2016.01.027

9. Raj S., Khurana S., Choudhari R. et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021. 69. P. 166-177. https://doi.org/10.1016/j.semcancer.2019.11.002

10. Ahmad J., Akhter S., Rizwanullah Md. et al. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl. 2015. 8. P. 55-66. https://doi.org/10.2147/NSA.S49052

11. Huang X., El-Sayed M.A. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine. 2011. 47, Issue 1. P. 1-9. https://doi.org/10.1016/j.ajme.2011.01.001

12. Turcheniuk K., Dumych T., Bilyy R. et al. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 2016. 6. P. 1600-1610. https://doi.org/10.1039/C5RA24662H

13. Vines J.B., Yoon J.-H., Ryu N.-E., Lim D.-J., and Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019. 7, Issue 167. P. 1-36. https://doi.org/10.3389/fchem.2019.00167

14. Domingo E., Holland J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 1997. 51. P.151-178. https://doi.org/10.1146/annurev.micro.51.1.151

Vhh attached to dual functional liposomes encapsulating dapivirine. Nanoscale Res. Lett. 2016. 11, No 1. P. 350. https://doi.org/10.1146/annurev.micro.51.1.151 https://doi.org/10.1146/annurev.micro.51.1.151

15. Wentola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics. 2015. 40, Issue 4. P. 277-283.

16. Sablon K. Single-component polymer nanocapsules for drug delivery application. Nanoscale Res. Lett. 2008. 3, Issue 7. P. 265-267. https://doi.org/10.1007/s11671-008-9145-1

17. Zhao M.X., Zhu B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 2016. 11. P. 207. 18. Chakravarty M. and Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. 2021. 11, Issue 3. P. 748-787. https://doi.org/10.1007/s13346-020-00818-0 https://doi.org/10.1186/s11671-016-1394-9

19. Lu L., Sun R.W., Chen R. et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008. 13, Issue 2. P. 253-262. https://doi.org/10.1177/135965350801300210

20. Mazurkova N.A., Spitsyna Yu.E., Ismagilov Z.R. et al. Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnologies in Russia. 2010. 5. P. 417-420. https://doi.org/10.1134/S1995078010050174

21. Lozovski V., Lysenko V., Piatnytsia V. et al. Physical point of view for antiviral effect caused by the interaction between the viruses and nanoparticles. J. Bionanosci. 2012. 6. P. 109-112. https://doi.org/10.1166/jbns.2012.1084

22. Shionoiri N., Sato T., Fujimori Y. et al. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J. Biosci. Bioeng. 2012. 113, Issue 5. P. 580-586. https://doi.org/10.1016/j.jbiosc.2011.12.006

23. Lysenko V., Lozovski V., Lokshyn M. et al. Nanoparticles as antiviral agents against adenovirus. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018. 9. P. 025021. https://doi.org/10.1088/2043-6254/aac42a

24. Paradowska E., Studzinska M., Jablonska A. Lozovski V. et al. Antiviral effect of nonfunctionalized gold nanoparticles against herpes simplex virus type-1 (HSV-1) and possible contribution of near-field interaction mechanism. Molecules. 2021. 26, Issue 19. P. 5960. https://doi.org/10.3390/molecules26195960

25. Morones J.R., Elechiguerra J.L., Camacho A. et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005. 16, Issue 10. P. 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059

26. Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011. 27, Issue 7. P. 4020-4028. https://doi.org/10.1021/la104825u

27. Azam A., Ahmed A.S., Oves M., Khan M.S., Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int. J. Nanomed. 2012. 7. P. 3527-3535. https://doi.org/10.2147/IJN.S29020

28. Van Dong P., Ha C., Binh L., Kasbohm J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012. 2. P. 9. https://doi.org/10.1186/2228-5326-2-9

29. Siddiqi K.S., Rahman A., Tajuddin T. & Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018. 13. P. 141. https://doi.org/10.1186/s11671-018-2532-3

30. Lozovski V.Z., Lysenko V.S. and Rusinchuk N.M. Near-field interaction explains features of antiviral action of non-functionalized nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2020. 11. P. 015014. https://doi.org/10.1088/2043-6254/ab7910

31. Lysenko V., Lozovski V., Spivak M. Nanophysics and antiviral therapy. Ukr. J. Phys. 2013. 58, Issue 1. P. 77-90. https://doi.org/10.15407/ujpe58.01.0077

32. Khylko O., Rusinchuk N., Shydlovska O. et al. Influence of the virus-nanoparticles system illumination on the virus infectivity. J. Bionanosci. 2016. 10. P. 453-459. https://doi.org/10.1166/jbns.2016.1378

33. Elechiguerra J.L., Burt J.L., Morones J.R. et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005. 3. P. 6. https://doi.org/10.1186/1477-3155-3-6

34.Rafiei S., Rezatofighi S.E., Ardakani M.R. and Rastegarzadeh S. Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Trans. Nanobioscience. 2016. 15, Issue 1. P. 34-40. https://doi.org/10.1109/TNB.2015.2508718

35. Barash Yu.S. Ginzburg V.L. Electromagnetic Fluctuations and Molecular Forces in Condensed Matter. Chapter 6. Modern Problems in Condensed Matter Sciences. 1989. 24. P. 389-457. https://doi.org/10.1016/B978-0-444-87366-8.50012-6

36. Cappella B. and Dietler G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, Issues 1-3. P. 1-104. https://doi.org/10.1016/S0167-5729(99)00003-5

37. Simpson W. and Leonhardt U. Forces of the Quantum Vacuum. Singapore: World Scientific, 2015. https://doi.org/10.1142/9383

38. Kysylychyn D., Piatnytsia V., Lozovski V. Electro-dynamic interaction between nanoparticle and surface of a solid. Phys. Rev. E. 2013. 88. P. 052403. https://doi.org/10.1103/PhysRevE.88.052403

39. Lozovski V., Rusinchuk N., Vasiliev T. Repulsive interaction between two different-sized nanoparticles due to self-consistency. IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). 2019. P. 253-256. https://doi.org/10.1109/ELNANO.2019.8783873

40. Lozovski V., Khudik B. The new mechanism of physical adsorption on solid surface. I. Adsorption of nonpolar molecules. phys. status solidi (b). 1990. 158. P. 511. https://doi.org/10.1002/pssb.2221580212

41. Pohl D.W. Near-field optics: Light for the world of nano-scale science. Thin Solid Films. 1995. 264, Issue 2. P. 250-254. https://doi.org/10.1016/0040-6090(95)05822-2

42. Iezhokin I., Keller O., and Lozovski V. Induced light emission from quantum dots: The directional near-field pattern. J. Comp. Theor. Nanosci. 2010. 7. P. 281-288. https://doi.org/10.1166/jctn.2010.1360

43. Rochat R.H., Liu X., Murata K., Nagayama K., Rixon F.J., and Chiu W. Seeing the portal in herpes simplex virus type 1 B capsids. J. Virol. 2011. 85, Issue 4. P. 1871-1874. https://doi.org/10.1128/JVI.01663-10

44. Vishwakarma V., Samal S.S., Manoharan N. Safety and risk associated with nanoparticles - a review. Journal of Minerals and Materials Characterization and Engineering. 2010. 9, Issue 5. P. 455-459. https://doi.org/10.4236/jmmce.2010.95031

45. Hagens W.I., Oomen A.G., de Jong W.H., Casse F.R., Sips A.J. What do we need to know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology. 2007. 49, Issue 3. P. 217-229. https://doi.org/10.1016/j.yrtph.2007.07.006

46. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005. 113, Issue 7. P. 823-839. https://doi.org/10.1289/ehp.7339

47. Lokshyn M., Lozovski V., Lysenko V. et al. Purification of bioliquids from viruses by surface plasmon-polaritons. J. Bionanosci. 2015. 9. P. 431-438. https://doi.org/10.1166/jbns.2015.1327