Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 185-195(2022).
DOI: https://doi.org/10.15407/spqeo25.02.185
References
1. Jeevanandam J., Barhoum A., Yen S.C., Dufresne A., and Danquah M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018. 9. P. 1050-1074.
https://doi.org/10.3762/bjnano.9.98
2. Aldea A., Barsan V. (Eds.). Trends in Nanophysics, Theory, Experiment and Technology. Springer-Verlag, Berlin, Heidelberg, 2010.
https://doi.org/10.1007/978-3-642-12070-1
3. Sattler K.D. (Ed.). Handbook of Nanophysics: Nanoparticles and Quantum Dots. Boca Raton, CRC Press, 2016.
4. Soares S., Sousa J., Pais A. and Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 2018. 6. P. 360.
https://doi.org/10.3389/fchem.2018.00360
5. Nagy J.A., Chang S-H., Dvorak A.M. and Dvorak H.F. Why are tumor blood vessels abnormal and why is it important to know? British Journal of Cancer. 2009. 100. P. 865-869.
https://doi.org/10.1038/sj.bjc.6604929
6. Grebenik E.A., Generalova A.N., Nechaev A.V. et al. Specific visualization of tumor cells using upconversion nanophosphors. Acta Naturae. 2014. 6, Issue 4. P. 48-53.
https://doi.org/10.32607/20758251-2014-6-4-48-53
7. Sobral-Filho R.G., DeVorkin L., Macpherson S. et al. Ex vivo detection of circulating tumor cells from whole blood by direct nanoparticle visua-lization. ACS Nano. 2018. 12, Issue 2. P. 1902-1909.
https://doi.org/10.1021/acsnano.7b08813
8. Cheng Z., Yan X., Sun X. et al. Tumor molecular imaging with nanoparticles. Eng. 2016. 2, No 1. P. 132-140.
https://doi.org/10.1016/J.ENG.2016.01.027
9. Raj S., Khurana S., Choudhari R. et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021. 69. P. 166-177.
https://doi.org/10.1016/j.semcancer.2019.11.002
10. Ahmad J., Akhter S., Rizwanullah Md. et al. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl. 2015. 8. P. 55-66.
https://doi.org/10.2147/NSA.S49052
11. Huang X., El-Sayed M.A. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine. 2011. 47, Issue 1. P. 1-9.
https://doi.org/10.1016/j.ajme.2011.01.001
12. Turcheniuk K., Dumych T., Bilyy R. et al. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 2016. 6. P. 1600-1610.
https://doi.org/10.1039/C5RA24662H
13. Vines J.B., Yoon J.-H., Ryu N.-E., Lim D.-J., and Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019. 7, Issue 167. P. 1-36.
https://doi.org/10.3389/fchem.2019.00167
14. Domingo E., Holland J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 1997. 51. P.151-178.
https://doi.org/10.1146/annurev.micro.51.1.151
Vhh attached to dual functional liposomes encapsulating dapivirine. Nanoscale Res. Lett. 2016. 11, No 1. P. 350. https://doi.org/10.1146/annurev.micro.51.1.151
https://doi.org/10.1146/annurev.micro.51.1.151
15. Wentola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics. 2015. 40, Issue 4. P. 277-283.
16. Sablon K. Single-component polymer nanocapsules for drug delivery application. Nanoscale Res. Lett. 2008. 3, Issue 7. P. 265-267.
https://doi.org/10.1007/s11671-008-9145-1
17. Zhao M.X., Zhu B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 2016. 11. P. 207.
18. Chakravarty M. and Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. 2021. 11, Issue 3. P. 748-787. https://doi.org/10.1007/s13346-020-00818-0
https://doi.org/10.1186/s11671-016-1394-9
19. Lu L., Sun R.W., Chen R. et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008. 13, Issue 2. P. 253-262.
https://doi.org/10.1177/135965350801300210
20. Mazurkova N.A., Spitsyna Yu.E., Ismagilov Z.R. et al. Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnologies in Russia. 2010. 5. P. 417-420.
https://doi.org/10.1134/S1995078010050174
21. Lozovski V., Lysenko V., Piatnytsia V. et al. Physical point of view for antiviral effect caused by the interaction between the viruses and nanoparticles. J. Bionanosci. 2012. 6. P. 109-112.
https://doi.org/10.1166/jbns.2012.1084
22. Shionoiri N., Sato T., Fujimori Y. et al. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J. Biosci. Bioeng. 2012. 113, Issue 5. P. 580-586.
https://doi.org/10.1016/j.jbiosc.2011.12.006
23. Lysenko V., Lozovski V., Lokshyn M. et al. Nanoparticles as antiviral agents against adenovirus. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018. 9. P. 025021.
https://doi.org/10.1088/2043-6254/aac42a
24. Paradowska E., Studzinska M., Jablonska A. Lozovski V. et al. Antiviral effect of nonfunctionalized gold nanoparticles against herpes simplex virus type-1 (HSV-1) and possible contribution of near-field interaction mechanism. Molecules. 2021. 26, Issue 19. P. 5960.
https://doi.org/10.3390/molecules26195960
25. Morones J.R., Elechiguerra J.L., Camacho A. et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005. 16, Issue 10. P. 2346-2353.
https://doi.org/10.1088/0957-4484/16/10/059
26. Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011. 27, Issue 7. P. 4020-4028.
https://doi.org/10.1021/la104825u
27. Azam A., Ahmed A.S., Oves M., Khan M.S., Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int. J. Nanomed. 2012. 7. P. 3527-3535.
https://doi.org/10.2147/IJN.S29020
28. Van Dong P., Ha C., Binh L., Kasbohm J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012. 2. P. 9.
https://doi.org/10.1186/2228-5326-2-9
29. Siddiqi K.S., Rahman A., Tajuddin T. & Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018. 13. P. 141.
https://doi.org/10.1186/s11671-018-2532-3
30. Lozovski V.Z., Lysenko V.S. and Rusinchuk N.M. Near-field interaction explains features of antiviral action of non-functionalized nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2020. 11. P. 015014.
https://doi.org/10.1088/2043-6254/ab7910
31. Lysenko V., Lozovski V., Spivak M. Nanophysics and antiviral therapy. Ukr. J. Phys. 2013. 58, Issue 1. P. 77-90.
https://doi.org/10.15407/ujpe58.01.0077
32. Khylko O., Rusinchuk N., Shydlovska O. et al. Influence of the virus-nanoparticles system illumination on the virus infectivity. J. Bionanosci. 2016. 10. P. 453-459.
https://doi.org/10.1166/jbns.2016.1378
33. Elechiguerra J.L., Burt J.L., Morones J.R. et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005. 3. P. 6.
https://doi.org/10.1186/1477-3155-3-6
34.Rafiei S., Rezatofighi S.E., Ardakani M.R. and Rastegarzadeh S. Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Trans. Nanobioscience. 2016. 15, Issue 1. P. 34-40.
https://doi.org/10.1109/TNB.2015.2508718
35. Barash Yu.S. Ginzburg V.L. Electromagnetic Fluctuations and Molecular Forces in Condensed Matter. Chapter 6. Modern Problems in Condensed Matter Sciences. 1989. 24. P. 389-457.
https://doi.org/10.1016/B978-0-444-87366-8.50012-6
36. Cappella B. and Dietler G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, Issues 1-3. P. 1-104.
https://doi.org/10.1016/S0167-5729(99)00003-5
37. Simpson W. and Leonhardt U. Forces of the Quantum Vacuum. Singapore: World Scientific, 2015. https://doi.org/10.1142/9383
38. Kysylychyn D., Piatnytsia V., Lozovski V. Electro-dynamic interaction between nanoparticle and surface of a solid. Phys. Rev. E. 2013. 88. P. 052403.
https://doi.org/10.1103/PhysRevE.88.052403
39. Lozovski V., Rusinchuk N., Vasiliev T. Repulsive interaction between two different-sized nanoparticles due to self-consistency. IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). 2019. P. 253-256.
https://doi.org/10.1109/ELNANO.2019.8783873
40. Lozovski V., Khudik B. The new mechanism of physical adsorption on solid surface. I. Adsorption of nonpolar molecules. phys. status solidi (b). 1990. 158. P. 511.
https://doi.org/10.1002/pssb.2221580212
41. Pohl D.W. Near-field optics: Light for the world of nano-scale science. Thin Solid Films. 1995. 264, Issue 2. P. 250-254.
https://doi.org/10.1016/0040-6090(95)05822-2
42. Iezhokin I., Keller O., and Lozovski V. Induced light emission from quantum dots: The directional near-field pattern. J. Comp. Theor. Nanosci. 2010. 7. P. 281-288.
https://doi.org/10.1166/jctn.2010.1360
43. Rochat R.H., Liu X., Murata K., Nagayama K., Rixon F.J., and Chiu W. Seeing the portal in herpes simplex virus type 1 B capsids. J. Virol. 2011. 85, Issue 4. P. 1871-1874.
https://doi.org/10.1128/JVI.01663-10
44. Vishwakarma V., Samal S.S., Manoharan N. Safety and risk associated with nanoparticles - a review. Journal of Minerals and Materials Characterization and Engineering. 2010. 9, Issue 5. P. 455-459.
https://doi.org/10.4236/jmmce.2010.95031
45. Hagens W.I., Oomen A.G., de Jong W.H., Casse F.R., Sips A.J. What do we need to know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology. 2007. 49, Issue 3. P. 217-229.
https://doi.org/10.1016/j.yrtph.2007.07.006
46. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005. 113, Issue 7. P. 823-839.
https://doi.org/10.1289/ehp.7339
47. Lokshyn M., Lozovski V., Lysenko V. et al. Purification of bioliquids from viruses by surface plasmon-polaritons. J. Bionanosci. 2015. 9. P. 431-438.
https://doi.org/10.1166/jbns.2015.1327
| |
|
|