Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 134-141 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.134
References
1. Mikolajick T., Slesazeck S., Mulaosmanovic H.
et al. Next generation ferroelectric materials for
semiconductor process integration and their
applications. J. Appl. Phys. 2021. 129. P. 100901.
https://doi.org/10.1063/5.0037617
2. Kim K.-H., Karpov I., Olsson R.H. III, Jariwala D.
Wurtzite and fluorite ferroelectric materials for
electronic memory. Nat. Nanotechnol. 2023. 18.
P. 422. https://doi.org/10.1038/s41565-023-01361-y
3. Yang W., Yu C., Li H. et al. Ferroelectricity of
hafnium oxide-based materials: Current statuses and
future prospects from physical mechanisms to device
applications. J. Semicond. 2023. 44. P. 053101.
https://doi.org/10.1088/1674-4926/44/5/053101
4. Kourouklis G.A., Liarokapis E. Pressure and tempe-
rature dependence of the Raman spectra of zirconia
and hafnia. J. Am. Ceram. Soc. 1991. 74. P. 520.
https://doi.org/10.1111/j.1151-2916.1991.tb04054.x
5. Ishigame M., Sakurai T. Temperature dependence
of the Raman spectra of ZrO 2 . J. Am. Ceram. Soc.
1977. 60. P. 367. https://doi.org/10.1111/j.1151-2916.1977.tb15561.x
6. Boscke T.S., Teichert S., Brauhaus D. et al. Phase
transitions in ferroelectric silicon doped hafnium
oxide. Appl. Phys. Lett. 2011. 99. P. 112904.
https://doi.org/10.1063/1.3636434
7. Yun Y., Buragohain P., Li M. et al. Intrinsic
ferroelectricity in Y-doped HfO 2 thin films. Nat.
Mater. 2022. 21. P. 903.
https://doi.org/10.1038/s41563-022-01282-6
8. Delodovici F., Barone P., Picozzi S. Finite-size
effects on ferroelectricity in rhombohedral HfO 2 .
Phys. Rev. B. 2022. 106. P. 115438.
https://doi.org/10.1103/PhysRevB.106.115438
9. Park M.H., Lee Y.H., Kim H.J. et al. Surface and
grain boundary energy as the key enabler of ferro-
electricity in nanoscale hafnia-zirconia: a comparison
SPQEO, 2025. V. 28, No 2. P. 134-141.
Eliseev E.A., Kondakova I.V., Zagorodniy Yu.O. et al. Origin of ferroelectric-like orthorhombic phase …
140
of model and experiment. Nanoscale. 2017. 9.
P. 9973. https://doi.org/10.1039/C7NR02121F
10. Lee D.H., Lee Y., Yang K. et al. Domains and
domain dynamics in fluorite-structured ferro-
electrics. Appl. Phys. Rev. 2021. 8. P. 021312.
https://doi.org/10.1063/5.0047977
11. Ma L.-Y., Liu S. Structural polymorphism kinetics
promoted by charged oxygen vacancies in HfO 2 .
Phys. Rev. Lett. 2023. 130. P. 096801.
https://doi.org/10.1103/PhysRevLett.130.096801
12. Glinchuk M.D., Morozovska A.N., Lukowiak A.
et al. Possible electrochemical origin of
ferroelectricity in HfO 2 thin films. J. Alloys Compd.
2020. 830. P. 153628.
https://doi.org/10.1016/j.jallcom.2019.153628
13. Kang S., Jang W.-S., Morozovska A.N. et al.
Highly enhanced ferroelectricity in HfO 2 -based
ferroelectric thin film by light ion bombardment.
Science. 2022. 376. P. 731-738.
https://doi.org/10.1126/science.abk3195
14. Yang W., Yu C., Li H. et al. Ferroelectricity of
hafnium oxide based materials: Current statuses and
future prospects from physical mechanisms to
device applications. J. Semicond. 2023. 44. P. 1-45.
https://doi.org/10.1088/1674-4926/44/5/053101
15. Park M.H., Chung C.-C., Schenk T. et al. Effect of
annealing ferroelectric HfO 2 thin films: in situ, high
temperature X-ray diffraction. Adv. Electron.
Mater. 2018. 4. P. 1800091.
https://doi.org/10.1002/aelm.201800091
16. Kelley K.P., Morozovska A.N., Eliseev E.A. et al.
Ferroelectricity in Hafnia controlled via surface
electrochemical state. Nat. Mater. 2023. 22. P.
1144. https://doi.org/10.1038/s41563-023-01619-9
17. Tang J., Fabbri J., Robinson R.D. et al. Solid-
solution nanoparticles: Use of a nonhydrolytic sol-
gel synthesis to prepare HfO 2 and Hf x Zr 1-x O 2
nanocrystals. Chem. Mater. 2004. 16. P. 1336.
https://doi.org/10.1021/cm049945w
18. Kumar H.P., Vidya S., Kumar S.S. et al. Optical
properties of nanocrystalline HfO 2 synthesized by
an auto-igniting combustion synthesis. J. Asian
Ceram. Soc. 2015. 3. P. 64-69.
http://doi.org/10.1016/j.jascer.2014.10.009
19. Jayaraman V., Bhavesh G., Chinnathambi S. et al.
Synthesis and characterization of hafnium oxide
nanoparticles for bio-safety. Mater. Express. 2014.
4. P. 375. https://doi.org/10.1166/mex.2014.1190
20. Wan Y., Zhou X. Formation mechanism of hafnium
oxide nanoparticles by a hydrothermal route. RSC
Adv. 2017. 7. P. 7763.
https://doi.org/10.1039/C6RA26663K
21. Ren L., Yang L., Zhang S. et al. Largely enhanced
dielectric properties of polymer composites with HfO 2
nanoparticles for high-temperature film capacitors.
Compos. Sci. Technol. 2021. 201. P. 108528.
https://doi.org/10.1016/j.compscitech.2020.108528
22. McGinnity T.L., Sokolova V., Prymak O. et al.
Colloidal stability, cytotoxicity, and cellular uptake
of HfO 2 nanoparticles. J. Biomed. Mater. Res. B:
Appl. Biomater. 2021. 109. P. 1407.
https://doi.org/10.1002/jbm.b.34800
23. Kumar S., Dehury T., Rath C. Stabilization of cubic
phase at room temperature and photoluminescence
properties of Dy and Sm Co-doped HfO 2
nanoparticles. ECS J. Solid State Sci. Technol.
2021. 10. P. 081009. https://doi.org/10.1149/2162-8777/ac1c54
24. Eliseev E.A., Zagorodniy Yu.O., Pavlikov V.N.
et al. Phase diagrams and polarization reversal in
nanosized Hf x Zr 1-x O 2-y . AIP Adv. 2024. 14.
P. 055224. https://doi.org/10.1063/5.0209123
25. Laganovska K., Vitola V., Einbergs E. et al. Impact
of europium and niobium doping on hafnium oxide
(HfO 2 ): Comparative analysis of sol-gel and
combustion synthesis methods. Ceramics. 2024. 7.
P. 15-28. https://doi.org/10.3390/ceramics7010002
26. Fujimoto K., Sato Y., Fuchikami Y. et al. Ortho-
rhombic-like atomic arrangement in hafnium-oxide-
based nanoparticles. J. Am. Ceram. Soc. 2022. 105.
P. 2823-2831. https://doi.org/10.1111/jace.18242
27. Park M.H., Chung C.-C., Schenk T. et al. Effect of
Annealing ferroelectric HfO 2 thin films: in situ,
high temperature X-ray diffraction. Adv. Electron.
Mater. 2018. 4. P. 1800091.
https://doi.org/10.1002/aelm.201800091
28. Kelley K.P., Morozovska A.N., Eliseev E.A. et al.
Ferroelectricity in hafnia controlled via surface
electrochemical state. Nat. Mater. 2023. 22. P.
1144. https://doi.org/10.1038/s41563-023-01619-9
29. Morozovska A.N., Strikha M.V., Kelley K.P. et al.
Effective Landau-type model of a Hf x Zr 1-x O 2 -
graphene nanostructure. Phys. Rev. Appl. 2023. 20.
P. 054007.
https://doi.org/10.1103/PhysRevApplied.20.054007
30. Eliseev E.A., Zagorodniy Y.O., Pavlikov V.N. et al.
Phase diagrams and polarization reversal in
nanosized Hf x Zr 1-x O 2-y . AIP Adv. 2024. 14.
P. 055224. https://doi.org/10.1063/5.0209123
31. Eliseev E.A., Kalinin S.V., Morozovska A.N. Ferro-
ionic states and domains morphology in Hf x Zr 1-x O 2
nanoparticles. J. Appl. Phys. 2025. 137. P. 034103.
https://doi.org/10.1063/5.0243067
32. Blinc R., Zeks B. Soft Mode in Ferroelectrics and
Antiferroelectrics. North-Holland Publ. Company,
Amsterdam, Oxford, 1974.
33. Tagantsev A.K., Vaideeswaran K., Vakhrushev S.B.
et al. The origin of antiferroelectricity in PbZrO 3 .
Nature Commun. 2013. 4. P. 2229.
https://doi.org/10.1038/ncomms3229
34. Rabe K.M. Antiferroelectricity in Oxides: A
Reexamination. In: Functional Metal Oxides. John
Wiley & Sons, Ltd. P. 221-244.
https://doi.org/10.1002/9783527654864.ch7
35. Hlinka J., Ostapchuk T., Buixaderas E. et al.
Multiple soft-mode vibrations of lead zirconate.
Phys. Rev. Lett. 2014. 112. P. 197601.
https://doi.org/10.1103/PhysRevLett.112.197601
SPQEO, 2025. V. 28, No 2. P. 134-141.
Eliseev E.A., Kondakova I.V., Zagorodniy Yu.O. et al. Origin of ferroelectric-like orthorhombic phase …
141
36. Tagantsev A., Cross L.E., Fousek J. Domains in
Ferroic Crystals and Thin Films. Springer: N. Y.,
2010. https://doi.org/10.1007/978-1-4419-1417-0
37. Kvasov A., Tagantsev A. Role of high-order electro-
mechanical coupling terms in thermodynamics of
ferroelectric thin films. Phys. Rev. B. 2013. 87. P.
184101. https://doi.org/10.1103/PhysRevB.87.184101
38. Kretschmer R. Binder K. Surface effects on phase
transitions in ferroelectrics and dipolar magnets.
Phys. Rev. B. 1979. 20. P. 1065.
https://doi.org/10.1103/PhysRevB.20.1065
39. Jia C.-L., Nagarajan V., He J.-Q. et al. Unit-cell
scale mapping of ferroelectricity and tetragonality
in epitaxial ultrathin ferroelectric films. Nat. Mater.
2007. 6. P. 64. https://doi.org/10.1038/nmat1808
40. Materlik R., K?nneth C., Kersch A. The origin of
ferroelectricity in Hf 1-x Zr x O 2 : A computational
investigation and a surface energy model. J. Appl.
Phys. 2015. 11. P. 134109.
http://doi.org/10.1063/1.4916707
41. Wright S., Barklie R.C. EPR characterization of
defects in m-HfO 2 . J. Mater. Sci.: Mater. Electron.
2007. 18. P. 743-746.
http://doi.org/10.1007/s10854-007-9119-6
42. Fang M., Lee D.S., Ziller J.W. et al. Synthesis of
the (N 2 ) 3- radical from Y 2+ and its protonolysis reac-
tivity to form (N 2 H 2 ) 2- via the Y[N(SiMe 3 ) 2 ] 3 /KC 8
reduction system. J. Am. Chem. Soc. 2011. 133, No
11. P. 3784-3787. https://doi.org/10.1021/ja1116827
| |
|
|