Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 142-146 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.142
References
1. Shaw P., Kumar N., Mumtaz S. et al. Evaluation of
non-thermal effect of microwave radiation and its
mode of action in bacterial cell inactivation. Sci.
Rep. 2021. 11, No 1. P. 14003.
https://doi.org/10.1038/s41598-021-93274-w
2. Kapcs?ndi V., Kov?cs A.J., Nem?nyi M., Lakatos
E. Investigation of a non-thermal effect of micro-
wave treatment. Acta Alimentaria. 2016. 45, No 2.
P. 224-232. https://doi.org/10.1556/066.2016.45.2.9
3. Wang N., Zou W., Li X.et al. Study and application
status of the nonthermal effects of microwaves in
chemistry and materials science - a brief review.
RSC Adv. 2022. 12, No 27. P. 17158-17181.
https://doi.org/10.1039/D2RA00381C
4. Sudrik S.G., Chavan S.P., Chandrakumar K.R.S.
et al. Microwave specific Wolff rearrangement of
?-diazoketones and its relevance to the nonthermal
and thermal effect. J. Org. Chem. 2002. 67, No 5. P.
1574-1579. https://doi.org/10.1021/jo010951a
5. Booske J.H., Cooper R.F., Dobson I. Mechanisms
for nonthermal effects on ionic mobility during
microwave processing of crystalline solids. J.
Mater. Res. 1992. 7, No 2. P. 495-501.
https://doi.org/10.1557/JMR.1992.0495
6. Redko R., Milenin G., Safriuk-Romanenko N. et al.
Modification of gallium nitride defect structure by
microwave radiation treatment. phys. status solidi
(a). 2025. P. 2400863.
https://doi.org/10.1002/pssa.202400863
7. Milenin G., Redko R. Transformation of structural
defects in semiconductors under action of
electromagnetic and magnetic fields causing
resonant phenomena. SPQEO. 2019. 22. P. 39-46.
https://doi.org/10.15407/spqeo.22.01.039
8. Redko R.A., Milenin G.V., Milenin V.V. Mecha-
nisms and possibilities of defect reorganization in
III-V compounds due to the non-thermal microwave
radiation treatment. J. Lumin. 2017. 192. P. 1295-1299. https://doi.org/10.1016/j.jlumin.2017.09.013
9. Redko R.A., Milenin G.V., Milenin V.V. Radiative
recombination in III-V semiconductors compounds
and their surface morphology transformations due
to treatments in weak magnetic fields. J. Lumin.
2019. 216. P. 116678.
https://doi.org/10.1016/j.jlumin.2019.116678
10. Milenin G., Milenin V., Redko R. Cyclotron radia-
tion of semiconductor crystals. SPQEO. 2018. 21.
P. 54-57. https://doi.org/10.15407/spqeo.21.01.054
11. Gammaitoni L., H?nggi P., Jung P., Marchesoni F.
Stochastic resonance. Rev. Mod. Phys. 1998. 70, No
1. P. 223-287.
https://doi.org/10.1103/RevModPhys.70.223
12. Jung P., H?nggi P. Amplification of small signals
via stochastic resonance. Phys. Rev. A. 1991. 44, No
12. P. 8032-8042.
https://doi.org/10.1103/PhysRevA.44.8032
13. Glukhov A.M., Turutanov O.G., Shnyrkov V.I., Ome-
lyanchouk A.N. Stochastic resonance in supercon-
ducting loops containing Josephson junctions. Nume-
rical simulation. Low Temp. Phys. 2006. 32, No 12.
P. 1123-1130. https://doi.org/10.1063/1.2400686
14. Redko R., Milenin G., Milenin V., Redko S.
Changes in impurity radiative recombination and
surface morphology induced by treatment of GaP in
weak magnetic field. SPQEO. 2020. 23. P. 302-307. https://doi.org/10.15407/spqeo.20.03.302
15. Steblenko L.P., Korotchenkov O.A., Podolyan A.A.
et al. The features of decay kinetics of photovoltage
in silicon crystals used in solar energy caused by
weak stationary magnetic field. J. Nano-Electron.
Phys. 2015. 7, No 1. P. 01036.
16. Makara V.A., Steblenko L.P., Gorid’ko N.Y. et al.
On the influence of a constant magnetic field on the
electroplastic effect in silicon crystals. Phys. Solid
State. 2001. 43, No 3. P. 480-483.
https://doi.org/10.1134/1.1356123
17. Steblenko L., Koplak O., Mudry S. Influence of the
weak magnetic field on nanostructure and physical
properties of the single crystal Si(111). J. Phys.:
Conf. Ser. 2011. 289, No 1. P. 012026.
https://doi.org/10.1088/1742-6596/289/1/012026
18. Makara V.A., Vasiliev M.O., Steblenko L.P. et al.
Influence of magnetic treatment on microhardness
and surface layers structure of silicon crystals. Phys.
Chem. Solid State. 2009. 10, No 1. P. 193-198.
19. Zhao X., Dong G., Wang C. The non-thermal
biological effects and mechanisms of microwave
exposure. Int. J. Radiat. Res. 2021. 19, No 3. P.
483-494. https://doi.org/10.52547/ijrr.19.3.483
20. Zhou M., Cheng K., Sun H., Jia G. Investigation of
nonlinear output-input microwave power of DMSO-
ethanol mixture by molecular dynamics simulation.
Sci. Rep. 2018. 8, No 1. P. 7186.
https://doi.org/10.1038/s41598-018-21846-4
SPQEO, 2025. V. 28, No 2. P. 142-146.
Milenin G.V., Redko R.A. Stochastic resonance as a defect transformation mechanism …
146
21. Singh S., Gupta D., Jain V. Microwave melting and
processing of metal-ceramic composite castings.
Proc. Inst. Mech. Eng., Part B. 2016. 232, No 7.
P. 1235-1243.
https://doi.org/10.1177/0954405416666900
22. Tian W., Li Z., Wu L. Experimental demonstration
of a microwave non-thermal effect in DMSO-NaCl
aqueous solution. Chem. Phys. 2020. 528. P. 110523.
https://doi.org/10.1016/j.chemphys.2019.110523
23. Byun I.G., Lee J.H., Lee J.M. et al. Evaluation of
non-thermal effects by microwave irradiation in
hydrolysis of waste-activated sludge. Water Sci.
Technol. 2014. 70, No 4. P. 742-749.
https://doi.org/10.2166/wst.2014.295
24. Redko R.A., Budzulyak S.I., Vakhnyak N.D.et al.
Effect of microwave (24 GHz) radiation treatment
on impurity photoluminescence of CdTe:Cl single
crystals. J. Lumin. 2016. 178. P. 68-71.
https://doi.org/10.1016/j.jlumin.2016.05.032
25. Redko R.A., Budzulyak S.I., Korbutyak D.V. et al.
Effect of microwave treatment on the luminescence
properties of CdS and CdTe:Cl single crystals.
Semiconductors. 2015. 49, No 7. P. 895-898.
https://doi.org/10.1134/S1063782615070209
26. Zheng X., Weng J., Hu B. Microwave-assisted
synthesis of mesoporous CdS quantum dots
modified by oleic acid. Mater. Sci. Semicond.
Process. 2010. 13, No 3. P. 217-220.
https://doi.org/10.1016/j.mssp.2010.10.012
27. ?aylan M., Metin B., Akbiyik H. et al. Microwave
assisted effective synthesis of CdS nanoparticles to
determine the copper ions in artichoke leaves
extract samples by flame atomic absorption
spectrometry. J. Food Compos. Anal. 2023. 115. P.
104965. https://doi.org/10.1016/j.jfca.2022.104965
1. Shaw P., Kumar N., Mumtaz S. et al. Evaluation of
non-thermal effect of microwave radiation and its
mode of action in bacterial cell inactivation. Sci.
Rep. 2021. 11, No 1. P. 14003.
https://doi.org/10.1038/s41598-021-93274-w
2. Kapcs?ndi V., Kov?cs A.J., Nem?nyi M., Lakatos
E. Investigation of a non-thermal effect of micro-
wave treatment. Acta Alimentaria. 2016. 45, No 2.
P. 224-232. https://doi.org/10.1556/066.2016.45.2.9
3. Wang N., Zou W., Li X.et al. Study and application
status of the nonthermal effects of microwaves in
chemistry and materials science - a brief review.
RSC Adv. 2022. 12, No 27. P. 17158-17181.
https://doi.org/10.1039/D2RA00381C
4. Sudrik S.G., Chavan S.P., Chandrakumar K.R.S.
et al. Microwave specific Wolff rearrangement of
?-diazoketones and its relevance to the nonthermal
and thermal effect. J. Org. Chem. 2002. 67, No 5. P.
1574-1579. https://doi.org/10.1021/jo010951a
5. Booske J.H., Cooper R.F., Dobson I. Mechanisms
for nonthermal effects on ionic mobility during
microwave processing of crystalline solids. J.
Mater. Res. 1992. 7, No 2. P. 495-501.
https://doi.org/10.1557/JMR.1992.0495
6. Redko R., Milenin G., Safriuk-Romanenko N. et al.
Modification of gallium nitride defect structure by
microwave radiation treatment. phys. status solidi
(a). 2025. P. 2400863.
https://doi.org/10.1002/pssa.202400863
7. Milenin G., Redko R. Transformation of structural
defects in semiconductors under action of
electromagnetic and magnetic fields causing
resonant phenomena. SPQEO. 2019. 22. P. 39-46.
https://doi.org/10.15407/spqeo.22.01.039
8. Redko R.A., Milenin G.V., Milenin V.V. Mecha-
nisms and possibilities of defect reorganization in
III-V compounds due to the non-thermal microwave
radiation treatment. J. Lumin. 2017. 192. P. 1295-1299. https://doi.org/10.1016/j.jlumin.2017.09.013
9. Redko R.A., Milenin G.V., Milenin V.V. Radiative
recombination in III-V semiconductors compounds
and their surface morphology transformations due
to treatments in weak magnetic fields. J. Lumin.
2019. 216. P. 116678.
https://doi.org/10.1016/j.jlumin.2019.116678
10. Milenin G., Milenin V., Redko R. Cyclotron radia-
tion of semiconductor crystals. SPQEO. 2018. 21.
P. 54-57. https://doi.org/10.15407/spqeo.21.01.054
11. Gammaitoni L., H?nggi P., Jung P., Marchesoni F.
Stochastic resonance. Rev. Mod. Phys. 1998. 70, No
1. P. 223-287.
https://doi.org/10.1103/RevModPhys.70.223
12. Jung P., H?nggi P. Amplification of small signals
via stochastic resonance. Phys. Rev. A. 1991. 44, No
12. P. 8032-8042.
https://doi.org/10.1103/PhysRevA.44.8032
13. Glukhov A.M., Turutanov O.G., Shnyrkov V.I., Ome-
lyanchouk A.N. Stochastic resonance in supercon-
ducting loops containing Josephson junctions. Nume-
rical simulation. Low Temp. Phys. 2006. 32, No 12.
P. 1123-1130. https://doi.org/10.1063/1.2400686
14. Redko R., Milenin G., Milenin V., Redko S.
Changes in impurity radiative recombination and
surface morphology induced by treatment of GaP in
weak magnetic field. SPQEO. 2020. 23. P. 302-307. https://doi.org/10.15407/spqeo.20.03.302
15. Steblenko L.P., Korotchenkov O.A., Podolyan A.A.
et al. The features of decay kinetics of photovoltage
in silicon crystals used in solar energy caused by
weak stationary magnetic field. J. Nano-Electron.
Phys. 2015. 7, No 1. P. 01036.
16. Makara V.A., Steblenko L.P., Gorid’ko N.Y. et al.
On the influence of a constant magnetic field on the
electroplastic effect in silicon crystals. Phys. Solid
State. 2001. 43, No 3. P. 480-483.
https://doi.org/10.1134/1.1356123
17. Steblenko L., Koplak O., Mudry S. Influence of the
weak magnetic field on nanostructure and physical
properties of the single crystal Si(111). J. Phys.:
Conf. Ser. 2011. 289, No 1. P. 012026.
https://doi.org/10.1088/1742-6596/289/1/012026
18. Makara V.A., Vasiliev M.O., Steblenko L.P. et al.
Influence of magnetic treatment on microhardness
and surface layers structure of silicon crystals. Phys.
Chem. Solid State. 2009. 10, No 1. P. 193-198.
19. Zhao X., Dong G., Wang C. The non-thermal
biological effects and mechanisms of microwave
exposure. Int. J. Radiat. Res. 2021. 19, No 3. P.
483-494. https://doi.org/10.52547/ijrr.19.3.483
20. Zhou M., Cheng K., Sun H., Jia G. Investigation of
nonlinear output-input microwave power of DMSO-
ethanol mixture by molecular dynamics simulation.
Sci. Rep. 2018. 8, No 1. P. 7186.
https://doi.org/10.1038/s41598-018-21846-4
SPQEO, 2025. V. 28, No 2. P. 142-146.
Milenin G.V., Redko R.A. Stochastic resonance as a defect transformation mechanism …
146
21. Singh S., Gupta D., Jain V. Microwave melting and
processing of metal-ceramic composite castings.
Proc. Inst. Mech. Eng., Part B. 2016. 232, No 7.
P. 1235-1243.
https://doi.org/10.1177/0954405416666900
22. Tian W., Li Z., Wu L. Experimental demonstration
of a microwave non-thermal effect in DMSO-NaCl
aqueous solution. Chem. Phys. 2020. 528. P. 110523.
https://doi.org/10.1016/j.chemphys.2019.110523
23. Byun I.G., Lee J.H., Lee J.M. et al. Evaluation of
non-thermal effects by microwave irradiation in
hydrolysis of waste-activated sludge. Water Sci.
Technol. 2014. 70, No 4. P. 742-749.
https://doi.org/10.2166/wst.2014.295
24. Redko R.A., Budzulyak S.I., Vakhnyak N.D.et al.
Effect of microwave (24 GHz) radiation treatment
on impurity photoluminescence of CdTe:Cl single
crystals. J. Lumin. 2016. 178. P. 68-71.
https://doi.org/10.1016/j.jlumin.2016.05.032
25. Redko R.A., Budzulyak S.I., Korbutyak D.V. et al.
Effect of microwave treatment on the luminescence
properties of CdS and CdTe:Cl single crystals.
Semiconductors. 2015. 49, No 7. P. 895-898.
https://doi.org/10.1134/S1063782615070209
26. Zheng X., Weng J., Hu B. Microwave-assisted
synthesis of mesoporous CdS quantum dots
modified by oleic acid. Mater. Sci. Semicond.
Process. 2010. 13, No 3. P. 217-220.
https://doi.org/10.1016/j.mssp.2010.10.012
27. ?aylan M., Metin B., Akbiyik H. et al. Microwave
assisted effective synthesis of CdS nanoparticles to
determine the copper ions in artichoke leaves
extract samples by flame atomic absorption
spectrometry. J. Food Compos. Anal. 2023. 115. P.
104965. https://doi.org/10.1016/j.jfca.2022.104965
| |
|
|