Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 142-146 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.142


References


1. Shaw P., Kumar N., Mumtaz S. et al. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Sci. Rep. 2021. 11, No 1. P. 14003. https://doi.org/10.1038/s41598-021-93274-w
2. Kapcs?ndi V., Kov?cs A.J., Nem?nyi M., Lakatos E. Investigation of a non-thermal effect of micro- wave treatment. Acta Alimentaria. 2016. 45, No 2. P. 224-232. https://doi.org/10.1556/066.2016.45.2.9
3. Wang N., Zou W., Li X.et al. Study and application status of the nonthermal effects of microwaves in chemistry and materials science - a brief review. RSC Adv. 2022. 12, No 27. P. 17158-17181. https://doi.org/10.1039/D2RA00381C
4. Sudrik S.G., Chavan S.P., Chandrakumar K.R.S. et al. Microwave specific Wolff rearrangement of ?-diazoketones and its relevance to the nonthermal and thermal effect. J. Org. Chem. 2002. 67, No 5. P. 1574-1579. https://doi.org/10.1021/jo010951a
5. Booske J.H., Cooper R.F., Dobson I. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids. J. Mater. Res. 1992. 7, No 2. P. 495-501. https://doi.org/10.1557/JMR.1992.0495
6. Redko R., Milenin G., Safriuk-Romanenko N. et al. Modification of gallium nitride defect structure by microwave radiation treatment. phys. status solidi (a). 2025. P. 2400863. https://doi.org/10.1002/pssa.202400863
7. Milenin G., Redko R. Transformation of structural defects in semiconductors under action of electromagnetic and magnetic fields causing resonant phenomena. SPQEO. 2019. 22. P. 39-46. https://doi.org/10.15407/spqeo.22.01.039
8. Redko R.A., Milenin G.V., Milenin V.V. Mecha- nisms and possibilities of defect reorganization in III-V compounds due to the non-thermal microwave radiation treatment. J. Lumin. 2017. 192. P. 1295-1299. https://doi.org/10.1016/j.jlumin.2017.09.013
9. Redko R.A., Milenin G.V., Milenin V.V. Radiative recombination in III-V semiconductors compounds and their surface morphology transformations due to treatments in weak magnetic fields. J. Lumin.
2019. 216. P. 116678. https://doi.org/10.1016/j.jlumin.2019.116678
10. Milenin G., Milenin V., Redko R. Cyclotron radia- tion of semiconductor crystals. SPQEO. 2018. 21. P. 54-57. https://doi.org/10.15407/spqeo.21.01.054
11. Gammaitoni L., H?nggi P., Jung P., Marchesoni F. Stochastic resonance. Rev. Mod. Phys. 1998. 70, No
1. P. 223-287. https://doi.org/10.1103/RevModPhys.70.223
12. Jung P., H?nggi P. Amplification of small signals via stochastic resonance. Phys. Rev. A. 1991. 44, No
12. P. 8032-8042. https://doi.org/10.1103/PhysRevA.44.8032
13. Glukhov A.M., Turutanov O.G., Shnyrkov V.I., Ome- lyanchouk A.N. Stochastic resonance in supercon- ducting loops containing Josephson junctions. Nume- rical simulation. Low Temp. Phys. 2006. 32, No 12. P. 1123-1130. https://doi.org/10.1063/1.2400686
14. Redko R., Milenin G., Milenin V., Redko S. Changes in impurity radiative recombination and surface morphology induced by treatment of GaP in weak magnetic field. SPQEO. 2020. 23. P. 302-307. https://doi.org/10.15407/spqeo.20.03.302
15. Steblenko L.P., Korotchenkov O.A., Podolyan A.A. et al. The features of decay kinetics of photovoltage in silicon crystals used in solar energy caused by weak stationary magnetic field. J. Nano-Electron. Phys. 2015. 7, No 1. P. 01036.
16. Makara V.A., Steblenko L.P., Gorid’ko N.Y. et al. On the influence of a constant magnetic field on the electroplastic effect in silicon crystals. Phys. Solid State. 2001. 43, No 3. P. 480-483. https://doi.org/10.1134/1.1356123
17. Steblenko L., Koplak O., Mudry S. Influence of the weak magnetic field on nanostructure and physical properties of the single crystal Si(111). J. Phys.: Conf. Ser. 2011. 289, No 1. P. 012026. https://doi.org/10.1088/1742-6596/289/1/012026
18. Makara V.A., Vasiliev M.O., Steblenko L.P. et al. Influence of magnetic treatment on microhardness and surface layers structure of silicon crystals. Phys. Chem. Solid State. 2009. 10, No 1. P. 193-198.
19. Zhao X., Dong G., Wang C. The non-thermal biological effects and mechanisms of microwave exposure. Int. J. Radiat. Res. 2021. 19, No 3. P. 483-494. https://doi.org/10.52547/ijrr.19.3.483
20. Zhou M., Cheng K., Sun H., Jia G. Investigation of nonlinear output-input microwave power of DMSO- ethanol mixture by molecular dynamics simulation. Sci. Rep. 2018. 8, No 1. P. 7186. https://doi.org/10.1038/s41598-018-21846-4 SPQEO, 2025. V. 28, No 2. P. 142-146. Milenin G.V., Redko R.A. Stochastic resonance as a defect transformation mechanism … 146
21. Singh S., Gupta D., Jain V. Microwave melting and processing of metal-ceramic composite castings. Proc. Inst. Mech. Eng., Part B. 2016. 232, No 7. P. 1235-1243. https://doi.org/10.1177/0954405416666900
22. Tian W., Li Z., Wu L. Experimental demonstration of a microwave non-thermal effect in DMSO-NaCl aqueous solution. Chem. Phys. 2020. 528. P. 110523. https://doi.org/10.1016/j.chemphys.2019.110523
23. Byun I.G., Lee J.H., Lee J.M. et al. Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge. Water Sci. Technol. 2014. 70, No 4. P. 742-749. https://doi.org/10.2166/wst.2014.295
24. Redko R.A., Budzulyak S.I., Vakhnyak N.D.et al. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals. J. Lumin. 2016. 178. P. 68-71. https://doi.org/10.1016/j.jlumin.2016.05.032
25. Redko R.A., Budzulyak S.I., Korbutyak D.V. et al. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl single crystals. Semiconductors. 2015. 49, No 7. P. 895-898. https://doi.org/10.1134/S1063782615070209
26. Zheng X., Weng J., Hu B. Microwave-assisted synthesis of mesoporous CdS quantum dots modified by oleic acid. Mater. Sci. Semicond. Process. 2010. 13, No 3. P. 217-220. https://doi.org/10.1016/j.mssp.2010.10.012
27. ?aylan M., Metin B., Akbiyik H. et al. Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J. Food Compos. Anal. 2023. 115. P.
104965. https://doi.org/10.1016/j.jfca.2022.104965
1. Shaw P., Kumar N., Mumtaz S. et al. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Sci. Rep. 2021. 11, No 1. P. 14003. https://doi.org/10.1038/s41598-021-93274-w
2. Kapcs?ndi V., Kov?cs A.J., Nem?nyi M., Lakatos E. Investigation of a non-thermal effect of micro- wave treatment. Acta Alimentaria. 2016. 45, No 2. P. 224-232. https://doi.org/10.1556/066.2016.45.2.9
3. Wang N., Zou W., Li X.et al. Study and application status of the nonthermal effects of microwaves in chemistry and materials science - a brief review. RSC Adv. 2022. 12, No 27. P. 17158-17181. https://doi.org/10.1039/D2RA00381C
4. Sudrik S.G., Chavan S.P., Chandrakumar K.R.S. et al. Microwave specific Wolff rearrangement of ?-diazoketones and its relevance to the nonthermal and thermal effect. J. Org. Chem. 2002. 67, No 5. P. 1574-1579. https://doi.org/10.1021/jo010951a
5. Booske J.H., Cooper R.F., Dobson I. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids. J. Mater. Res. 1992. 7, No 2. P. 495-501. https://doi.org/10.1557/JMR.1992.0495
6. Redko R., Milenin G., Safriuk-Romanenko N. et al. Modification of gallium nitride defect structure by microwave radiation treatment. phys. status solidi (a). 2025. P. 2400863. https://doi.org/10.1002/pssa.202400863
7. Milenin G., Redko R. Transformation of structural defects in semiconductors under action of electromagnetic and magnetic fields causing resonant phenomena. SPQEO. 2019. 22. P. 39-46. https://doi.org/10.15407/spqeo.22.01.039
8. Redko R.A., Milenin G.V., Milenin V.V. Mecha- nisms and possibilities of defect reorganization in III-V compounds due to the non-thermal microwave radiation treatment. J. Lumin. 2017. 192. P. 1295-1299. https://doi.org/10.1016/j.jlumin.2017.09.013
9. Redko R.A., Milenin G.V., Milenin V.V. Radiative recombination in III-V semiconductors compounds and their surface morphology transformations due to treatments in weak magnetic fields. J. Lumin.
2019. 216. P. 116678. https://doi.org/10.1016/j.jlumin.2019.116678
10. Milenin G., Milenin V., Redko R. Cyclotron radia- tion of semiconductor crystals. SPQEO. 2018. 21. P. 54-57. https://doi.org/10.15407/spqeo.21.01.054
11. Gammaitoni L., H?nggi P., Jung P., Marchesoni F. Stochastic resonance. Rev. Mod. Phys. 1998. 70, No
1. P. 223-287. https://doi.org/10.1103/RevModPhys.70.223
12. Jung P., H?nggi P. Amplification of small signals via stochastic resonance. Phys. Rev. A. 1991. 44, No
12. P. 8032-8042. https://doi.org/10.1103/PhysRevA.44.8032
13. Glukhov A.M., Turutanov O.G., Shnyrkov V.I., Ome- lyanchouk A.N. Stochastic resonance in supercon- ducting loops containing Josephson junctions. Nume- rical simulation. Low Temp. Phys. 2006. 32, No 12. P. 1123-1130. https://doi.org/10.1063/1.2400686
14. Redko R., Milenin G., Milenin V., Redko S. Changes in impurity radiative recombination and surface morphology induced by treatment of GaP in weak magnetic field. SPQEO. 2020. 23. P. 302-307. https://doi.org/10.15407/spqeo.20.03.302
15. Steblenko L.P., Korotchenkov O.A., Podolyan A.A. et al. The features of decay kinetics of photovoltage in silicon crystals used in solar energy caused by weak stationary magnetic field. J. Nano-Electron. Phys. 2015. 7, No 1. P. 01036.
16. Makara V.A., Steblenko L.P., Gorid’ko N.Y. et al. On the influence of a constant magnetic field on the electroplastic effect in silicon crystals. Phys. Solid State. 2001. 43, No 3. P. 480-483. https://doi.org/10.1134/1.1356123
17. Steblenko L., Koplak O., Mudry S. Influence of the weak magnetic field on nanostructure and physical properties of the single crystal Si(111). J. Phys.: Conf. Ser. 2011. 289, No 1. P. 012026. https://doi.org/10.1088/1742-6596/289/1/012026
18. Makara V.A., Vasiliev M.O., Steblenko L.P. et al. Influence of magnetic treatment on microhardness and surface layers structure of silicon crystals. Phys. Chem. Solid State. 2009. 10, No 1. P. 193-198.
19. Zhao X., Dong G., Wang C. The non-thermal biological effects and mechanisms of microwave exposure. Int. J. Radiat. Res. 2021. 19, No 3. P. 483-494. https://doi.org/10.52547/ijrr.19.3.483
20. Zhou M., Cheng K., Sun H., Jia G. Investigation of nonlinear output-input microwave power of DMSO- ethanol mixture by molecular dynamics simulation. Sci. Rep. 2018. 8, No 1. P. 7186. https://doi.org/10.1038/s41598-018-21846-4 SPQEO, 2025. V. 28, No 2. P. 142-146. Milenin G.V., Redko R.A. Stochastic resonance as a defect transformation mechanism … 146
21. Singh S., Gupta D., Jain V. Microwave melting and processing of metal-ceramic composite castings. Proc. Inst. Mech. Eng., Part B. 2016. 232, No 7. P. 1235-1243. https://doi.org/10.1177/0954405416666900
22. Tian W., Li Z., Wu L. Experimental demonstration of a microwave non-thermal effect in DMSO-NaCl aqueous solution. Chem. Phys. 2020. 528. P. 110523. https://doi.org/10.1016/j.chemphys.2019.110523
23. Byun I.G., Lee J.H., Lee J.M. et al. Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge. Water Sci. Technol. 2014. 70, No 4. P. 742-749. https://doi.org/10.2166/wst.2014.295
24. Redko R.A., Budzulyak S.I., Vakhnyak N.D.et al. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals. J. Lumin. 2016. 178. P. 68-71. https://doi.org/10.1016/j.jlumin.2016.05.032
25. Redko R.A., Budzulyak S.I., Korbutyak D.V. et al. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl single crystals. Semiconductors. 2015. 49, No 7. P. 895-898. https://doi.org/10.1134/S1063782615070209
26. Zheng X., Weng J., Hu B. Microwave-assisted synthesis of mesoporous CdS quantum dots modified by oleic acid. Mater. Sci. Semicond. Process. 2010. 13, No 3. P. 217-220. https://doi.org/10.1016/j.mssp.2010.10.012
27. ?aylan M., Metin B., Akbiyik H. et al. Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J. Food Compos. Anal. 2023. 115. P.
104965. https://doi.org/10.1016/j.jfca.2022.104965