Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 158-165 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.158


References


1. McKeever S.W.S. Thermoluminescence of Solids. Cambridge University Press, Cambridge, 1985.
2. Chen R., McKeever S.W.S. Theory of Thermoluminescence and Related Phenomena. World Scientific, Singapore, 1997.
3. Goel A., Wilczek M., Murphy A. et al. Thermoluminescent dosimeter. Reference article, Radiopaedia.org. 2025. https://doi.org/10.53347/rID-36761
4. Chen Y.S., Wu S.W., Huang H.C., Chen H.H. Absolute dose measurement and energy dependence of LiF dosimeters in proton therapy beam dosimetry. Ther. Radiol. Oncol. 2022. 6. Ð. 14. https://doi.org/10.21037/tro-22-16
5. Azorin J. Thermoluminescense and optical properties of some dosimetric materials. J. Therm. Anal. 1997. 50. P. 81-88. https://doi.org/10.1007/bf01979551
6. Kurudirek M. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 2014.
102. P. 139-146. https://doi.org/10.1016/j.radphyschem.2014.04.033
7. Tang K., Cui H., Fu L. et al. Optimize neutron minimum detectable dose of OSL composite neutron detectors based on Al 2 O 3 :C and 6 LiF. Radiat. Phys. Chem. 2025. 229. P. 112432. https:// doi.org/10.1016/j.radphyschem.2024.112432.
8. van Eijk C.W.E. Neutron detection and neutron dosimetry. Radiat. Prot. Dosimetry. 2004. 110. Ð. 5-13. https://doi.org/10.1093/rpd/nch155
9. Milman I.I., Nikiforov S.V., Kortov V.S. Dosimetry of mixed gamma-neutron field using TLD-500 detectors based on anion-defective corundum. Radiat. Measur. 2001. 33. Ð. 561-564. https://doi.org/10.1016/S1350-4487(01)00059-2
10. Milman I.I., Kortov V.S., Nikiforov S.V. An interactive process in the mechanism of the thermally stimulated luminescence of anion- defective ?-Al 2 O 3 crystals. Radiat. Measur. 1998.
29. Ð. 401-410. https://doi.org/10.1016/S1350-4487(98)00063-8
11. Bos A.J.J. High sensitivity thermoluminescence dosimetry. Nucl. Instr. Meth. Phys. Res. B. 2001.
184. Ð. 3-28. https://doi.org/10.1016/S0168-583X(01)00717-0
12. S?derstr?m P.-A., Matei C., Capponi L. et al. Characterization of a plutonium-beryllium neutron source. Appl. Radiat. Isot. 2021. 167. Ð. 109441. https://doi.org/10.1016/j.apradiso.2020.109441
13. Arnqvist E. Neutron Spectrometry Using Activation Detectors: Utilizing Measurements of Induced Radioactivity in Elements for Neutron Spectrum Unfolding. Independent thesis Advanced level (degree of Master), 2024. Uppsala, Universitet.
14. Maslyuk V.T. Svatiuk N.I., Boyko V.V. Physico- chemical and biological properties of saccharides and alcohol after nuclear radiation treatment. Nuclear Physics and Atomic Energy. 2024. 25. P. 72-78. https://doi.org/10.15407/jnpae2024.01.072
15. LyamayevV.I. A low-cost microcontroller-based measurement system for a fractional glow technique. Meas. Sci. Technol. 2006. 17. P. 75. https://doi.org/10.1088/0957-0233/17/12/N01
16. Richhariya T., Brahme N., Bisen D.P. et al. Analysis of thermoluminescence glow curve and evaluation of trapping parameters of cerium activated M 2 Al 2 SiO 7 (M = Ca and Sr) phosphor for TLD application. Mater. Chem. Phys. 2022. 287. P. 126273. https://doi.org/10.1016/j.matchemphys.2022.126273
17. Yavorskyi P.V. Lumini package for ab initio modeling of dosimetric experiments. Problems of Atomic Science and Technology. 2024. 5 (153). Ð. 154-160. https://doi.org/10.46813/2024-153-154
18. Kitis G., Chen R., Pagonis V. et al. Thermolu- minescence under an exponential heating function: II. Glow-curve deconvolution of experimental glow-curves. J. Phys. D: Appl. Phys. 2006. 39. P.
1508. https://doi.org/10.1088/0022-3727/39/8/009
19. Wazir-Ud-Din M., Ur-Rehman S., Mahmood M.M. et al. Computerized glow curve deconvolution (CGCD): A comparison using asymptotic vs rational approximation in thermoluminescence kinetic models. Appl. Radiat. Isot. 2022. 179. P. 110014. https://doi.org/10.1016/j.apradiso.2021.110014
20. Kitis G., Pagonis V. On the need for deconvolution analysis of experimental and simulated thermoluminescence glow curves. Materials (Basel).
2023. 16, No 2. P. 871. https://doi.org/10.3390/ma16020871
21. Benavente J.F., G?mez-Ros J.M., Romero A.M. Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions. Appl. Radiat. Isot. 2019. 153. P. 108843. https://doi.org/10.1016/j.apradiso.2019.108843
22. Yavorskyi P.V., Pop O.M., Maslyuk V.T. Sensory abilities of dosimetric materials under conditions of parameter fluctuations: Monte Carlo method. SPQEO. 2024. 27. P. 450-456. https://doi.org/10.15407/spqeo27.04.450.1 McKeever S.W.S. Thermoluminescence of Solids. Cambridge University Press, Cambridge, 1985.
2. Chen R., McKeever S.W.S. Theory of Thermoluminescence and Related Phenomena. World Scientific, Singapore, 1997.
3. Goel A., Wilczek M., Murphy A. et al. Thermoluminescent dosimeter. Reference article, Radiopaedia.org. 2025. https://doi.org/10.53347/rID-36761
4. Chen Y.S., Wu S.W., Huang H.C., Chen H.H. Absolute dose measurement and energy dependence of LiF dosimeters in proton therapy beam dosimetry. Ther. Radiol. Oncol. 2022. 6. Ð. 14. https://doi.org/10.21037/tro-22-16
5. Azorin J. Thermoluminescense and optical properties of some dosimetric materials. J. Therm. Anal. 1997. 50. P. 81-88. https://doi.org/10.1007/bf01979551
6. Kurudirek M. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 2014.
102. P. 139-146. https://doi.org/10.1016/j.radphyschem.2014.04.033
7. Tang K., Cui H., Fu L. et al. Optimize neutron minimum detectable dose of OSL composite neutron detectors based on Al 2 O 3 :C and 6 LiF. Radiat. Phys. Chem. 2025. 229. P. 112432. https:// doi.org/10.1016/j.radphyschem.2024.112432.
8. van Eijk C.W.E. Neutron detection and neutron dosimetry. Radiat. Prot. Dosimetry. 2004. 110. Ð. 5-13. https://doi.org/10.1093/rpd/nch155
9. Milman I.I., Nikiforov S.V., Kortov V.S. Dosimetry of mixed gamma-neutron field using TLD-500 detectors based on anion-defective corundum. Radiat. Measur. 2001. 33. Ð. 561-564. https://doi.org/10.1016/S1350-4487(01)00059-2
10. Milman I.I., Kortov V.S., Nikiforov S.V. An interactive process in the mechanism of the thermally stimulated luminescence of anion- defective ?-Al 2 O 3 crystals. Radiat. Measur. 1998.
29. Ð. 401-410. https://doi.org/10.1016/S1350-4487(98)00063-8
11. Bos A.J.J. High sensitivity thermoluminescence dosimetry. Nucl. Instr. Meth. Phys. Res. B. 2001.
184. Ð. 3-28. https://doi.org/10.1016/S0168-583X(01)00717-0
12. S?derstr?m P.-A., Matei C., Capponi L. et al. Characterization of a plutonium-beryllium neutron source. Appl. Radiat. Isot. 2021. 167. Ð. 109441. https://doi.org/10.1016/j.apradiso.2020.109441
13. Arnqvist E. Neutron Spectrometry Using Activation Detectors: Utilizing Measurements of Induced Radioactivity in Elements for Neutron Spectrum Unfolding. Independent thesis Advanced level (degree of Master), 2024. Uppsala, Universitet.
14. Maslyuk V.T. Svatiuk N.I., Boyko V.V. Physico- chemical and biological properties of saccharides and alcohol after nuclear radiation treatment. Nuclear Physics and Atomic Energy. 2024. 25. P. 72-78. https://doi.org/10.15407/jnpae2024.01.072
15. LyamayevV.I. A low-cost microcontroller-based measurement system for a fractional glow technique. Meas. Sci. Technol. 2006. 17. P. 75. https://doi.org/10.1088/0957-0233/17/12/N01
16. Richhariya T., Brahme N., Bisen D.P. et al. Analysis of thermoluminescence glow curve and evaluation of trapping parameters of cerium activated M 2 Al 2 SiO 7 (M = Ca and Sr) phosphor for TLD application. Mater. Chem. Phys. 2022. 287. P. 126273. https://doi.org/10.1016/j.matchemphys.2022.126273
17. Yavorskyi P.V. Lumini package for ab initio modeling of dosimetric experiments. Problems of Atomic Science and Technology. 2024. 5 (153). Ð. 154-160. https://doi.org/10.46813/2024-153-154
18. Kitis G., Chen R., Pagonis V. et al. Thermolu- minescence under an exponential heating function: II. Glow-curve deconvolution of experimental glow-curves. J. Phys. D: Appl. Phys. 2006. 39. P.
1508. https://doi.org/10.1088/0022-3727/39/8/009
19. Wazir-Ud-Din M., Ur-Rehman S., Mahmood M.M. et al. Computerized glow curve deconvolution (CGCD): A comparison using asymptotic vs rational approximation in thermoluminescence kinetic models. Appl. Radiat. Isot. 2022. 179. P. 110014. https://doi.org/10.1016/j.apradiso.2021.110014
20. Kitis G., Pagonis V. On the need for deconvolution analysis of experimental and simulated thermoluminescence glow curves. Materials (Basel).
2023. 16, No 2. P. 871. https://doi.org/10.3390/ma16020871
21. Benavente J.F., G?mez-Ros J.M., Romero A.M. Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions. Appl. Radiat. Isot. 2019. 153. P. 108843. https://doi.org/10.1016/j.apradiso.2019.108843
22. Yavorskyi P.V., Pop O.M., Maslyuk V.T. Sensory abilities of dosimetric materials under conditions of parameter fluctuations: Monte Carlo method. SPQEO. 2024. 27. P. 450-456. https://doi.org/10.15407/spqeo27.04.450