Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 158-165 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.158
References
1. McKeever S.W.S. Thermoluminescence of Solids.
Cambridge University Press, Cambridge, 1985.
2. Chen R., McKeever S.W.S. Theory of
Thermoluminescence and Related Phenomena.
World Scientific, Singapore, 1997.
3. Goel A., Wilczek M., Murphy A. et al.
Thermoluminescent dosimeter. Reference article,
Radiopaedia.org. 2025.
https://doi.org/10.53347/rID-36761
4. Chen Y.S., Wu S.W., Huang H.C., Chen H.H.
Absolute dose measurement and energy dependence
of LiF dosimeters in proton therapy beam
dosimetry. Ther. Radiol. Oncol. 2022. 6. Ð. 14.
https://doi.org/10.21037/tro-22-16
5. Azorin J. Thermoluminescense and optical
properties of some dosimetric materials. J. Therm.
Anal. 1997. 50. P. 81-88.
https://doi.org/10.1007/bf01979551
6. Kurudirek M. Effective atomic numbers and
electron densities of some human tissues and
dosimetric materials for mean energies of various
radiation sources relevant to radiotherapy and
medical applications. Radiat. Phys. Chem. 2014.
102. P. 139-146.
https://doi.org/10.1016/j.radphyschem.2014.04.033
7. Tang K., Cui H., Fu L. et al. Optimize neutron
minimum detectable dose of OSL composite neutron
detectors based on Al 2 O 3 :C and 6 LiF. Radiat. Phys.
Chem. 2025. 229. P. 112432. https://
doi.org/10.1016/j.radphyschem.2024.112432.
8. van Eijk C.W.E. Neutron detection and neutron
dosimetry. Radiat. Prot. Dosimetry. 2004. 110.
Ð. 5-13. https://doi.org/10.1093/rpd/nch155
9. Milman I.I., Nikiforov S.V., Kortov V.S. Dosimetry
of mixed gamma-neutron field using TLD-500
detectors based on anion-defective corundum.
Radiat. Measur. 2001. 33. Ð. 561-564.
https://doi.org/10.1016/S1350-4487(01)00059-2
10. Milman I.I., Kortov V.S., Nikiforov S.V. An
interactive process in the mechanism of the
thermally stimulated luminescence of anion-
defective ?-Al 2 O 3 crystals. Radiat. Measur. 1998.
29. Ð. 401-410. https://doi.org/10.1016/S1350-4487(98)00063-8
11. Bos A.J.J. High sensitivity thermoluminescence
dosimetry. Nucl. Instr. Meth. Phys. Res. B. 2001.
184. Ð. 3-28. https://doi.org/10.1016/S0168-583X(01)00717-0
12. S?derstr?m P.-A., Matei C., Capponi L. et al.
Characterization of a plutonium-beryllium neutron
source. Appl. Radiat. Isot. 2021. 167. Ð. 109441.
https://doi.org/10.1016/j.apradiso.2020.109441
13. Arnqvist E. Neutron Spectrometry Using Activation
Detectors: Utilizing Measurements of Induced
Radioactivity in Elements for Neutron Spectrum
Unfolding. Independent thesis Advanced level
(degree of Master), 2024. Uppsala, Universitet.
14. Maslyuk V.T. Svatiuk N.I., Boyko V.V. Physico-
chemical and biological properties of saccharides
and alcohol after nuclear radiation treatment.
Nuclear Physics and Atomic Energy. 2024. 25. P.
72-78. https://doi.org/10.15407/jnpae2024.01.072
15. LyamayevV.I. A low-cost microcontroller-based
measurement system for a fractional glow
technique. Meas. Sci. Technol. 2006. 17. P. 75.
https://doi.org/10.1088/0957-0233/17/12/N01
16. Richhariya T., Brahme N., Bisen D.P. et al.
Analysis of thermoluminescence glow curve and
evaluation of trapping parameters of cerium
activated M 2 Al 2 SiO 7 (M = Ca and Sr) phosphor for
TLD application. Mater. Chem. Phys. 2022. 287.
P. 126273.
https://doi.org/10.1016/j.matchemphys.2022.126273
17. Yavorskyi P.V. Lumini package for ab initio
modeling of dosimetric experiments. Problems of
Atomic Science and Technology. 2024. 5 (153).
Ð. 154-160. https://doi.org/10.46813/2024-153-154
18. Kitis G., Chen R., Pagonis V. et al. Thermolu-
minescence under an exponential heating function:
II. Glow-curve deconvolution of experimental
glow-curves. J. Phys. D: Appl. Phys. 2006. 39. P.
1508. https://doi.org/10.1088/0022-3727/39/8/009
19. Wazir-Ud-Din M., Ur-Rehman S., Mahmood M.M.
et al. Computerized glow curve deconvolution
(CGCD): A comparison using asymptotic vs
rational approximation in thermoluminescence
kinetic models. Appl. Radiat. Isot. 2022. 179.
P. 110014.
https://doi.org/10.1016/j.apradiso.2021.110014
20. Kitis G., Pagonis V. On the need for deconvolution
analysis of experimental and simulated
thermoluminescence glow curves. Materials (Basel).
2023. 16, No 2. P. 871.
https://doi.org/10.3390/ma16020871
21. Benavente J.F., G?mez-Ros J.M., Romero A.M.
Thermoluminescence glow curve deconvolution for
discrete and continuous trap distributions. Appl.
Radiat. Isot. 2019. 153. P. 108843.
https://doi.org/10.1016/j.apradiso.2019.108843
22. Yavorskyi P.V., Pop O.M., Maslyuk V.T. Sensory
abilities of dosimetric materials under conditions of
parameter fluctuations: Monte Carlo method.
SPQEO. 2024. 27. P. 450-456.
https://doi.org/10.15407/spqeo27.04.450.1 McKeever S.W.S. Thermoluminescence of Solids.
Cambridge University Press, Cambridge, 1985.
2. Chen R., McKeever S.W.S. Theory of
Thermoluminescence and Related Phenomena.
World Scientific, Singapore, 1997.
3. Goel A., Wilczek M., Murphy A. et al.
Thermoluminescent dosimeter. Reference article,
Radiopaedia.org. 2025.
https://doi.org/10.53347/rID-36761
4. Chen Y.S., Wu S.W., Huang H.C., Chen H.H.
Absolute dose measurement and energy dependence
of LiF dosimeters in proton therapy beam
dosimetry. Ther. Radiol. Oncol. 2022. 6. Ð. 14.
https://doi.org/10.21037/tro-22-16
5. Azorin J. Thermoluminescense and optical
properties of some dosimetric materials. J. Therm.
Anal. 1997. 50. P. 81-88.
https://doi.org/10.1007/bf01979551
6. Kurudirek M. Effective atomic numbers and
electron densities of some human tissues and
dosimetric materials for mean energies of various
radiation sources relevant to radiotherapy and
medical applications. Radiat. Phys. Chem. 2014.
102. P. 139-146.
https://doi.org/10.1016/j.radphyschem.2014.04.033
7. Tang K., Cui H., Fu L. et al. Optimize neutron
minimum detectable dose of OSL composite neutron
detectors based on Al 2 O 3 :C and 6 LiF. Radiat. Phys.
Chem. 2025. 229. P. 112432. https://
doi.org/10.1016/j.radphyschem.2024.112432.
8. van Eijk C.W.E. Neutron detection and neutron
dosimetry. Radiat. Prot. Dosimetry. 2004. 110.
Ð. 5-13. https://doi.org/10.1093/rpd/nch155
9. Milman I.I., Nikiforov S.V., Kortov V.S. Dosimetry
of mixed gamma-neutron field using TLD-500
detectors based on anion-defective corundum.
Radiat. Measur. 2001. 33. Ð. 561-564.
https://doi.org/10.1016/S1350-4487(01)00059-2
10. Milman I.I., Kortov V.S., Nikiforov S.V. An
interactive process in the mechanism of the
thermally stimulated luminescence of anion-
defective ?-Al 2 O 3 crystals. Radiat. Measur. 1998.
29. Ð. 401-410. https://doi.org/10.1016/S1350-4487(98)00063-8
11. Bos A.J.J. High sensitivity thermoluminescence
dosimetry. Nucl. Instr. Meth. Phys. Res. B. 2001.
184. Ð. 3-28. https://doi.org/10.1016/S0168-583X(01)00717-0
12. S?derstr?m P.-A., Matei C., Capponi L. et al.
Characterization of a plutonium-beryllium neutron
source. Appl. Radiat. Isot. 2021. 167. Ð. 109441.
https://doi.org/10.1016/j.apradiso.2020.109441
13. Arnqvist E. Neutron Spectrometry Using Activation
Detectors: Utilizing Measurements of Induced
Radioactivity in Elements for Neutron Spectrum
Unfolding. Independent thesis Advanced level
(degree of Master), 2024. Uppsala, Universitet.
14. Maslyuk V.T. Svatiuk N.I., Boyko V.V. Physico-
chemical and biological properties of saccharides
and alcohol after nuclear radiation treatment.
Nuclear Physics and Atomic Energy. 2024. 25. P.
72-78. https://doi.org/10.15407/jnpae2024.01.072
15. LyamayevV.I. A low-cost microcontroller-based
measurement system for a fractional glow
technique. Meas. Sci. Technol. 2006. 17. P. 75.
https://doi.org/10.1088/0957-0233/17/12/N01
16. Richhariya T., Brahme N., Bisen D.P. et al.
Analysis of thermoluminescence glow curve and
evaluation of trapping parameters of cerium
activated M 2 Al 2 SiO 7 (M = Ca and Sr) phosphor for
TLD application. Mater. Chem. Phys. 2022. 287.
P. 126273.
https://doi.org/10.1016/j.matchemphys.2022.126273
17. Yavorskyi P.V. Lumini package for ab initio
modeling of dosimetric experiments. Problems of
Atomic Science and Technology. 2024. 5 (153).
Ð. 154-160. https://doi.org/10.46813/2024-153-154
18. Kitis G., Chen R., Pagonis V. et al. Thermolu-
minescence under an exponential heating function:
II. Glow-curve deconvolution of experimental
glow-curves. J. Phys. D: Appl. Phys. 2006. 39. P.
1508. https://doi.org/10.1088/0022-3727/39/8/009
19. Wazir-Ud-Din M., Ur-Rehman S., Mahmood M.M.
et al. Computerized glow curve deconvolution
(CGCD): A comparison using asymptotic vs
rational approximation in thermoluminescence
kinetic models. Appl. Radiat. Isot. 2022. 179.
P. 110014.
https://doi.org/10.1016/j.apradiso.2021.110014
20. Kitis G., Pagonis V. On the need for deconvolution
analysis of experimental and simulated
thermoluminescence glow curves. Materials (Basel).
2023. 16, No 2. P. 871.
https://doi.org/10.3390/ma16020871
21. Benavente J.F., G?mez-Ros J.M., Romero A.M.
Thermoluminescence glow curve deconvolution for
discrete and continuous trap distributions. Appl.
Radiat. Isot. 2019. 153. P. 108843.
https://doi.org/10.1016/j.apradiso.2019.108843
22. Yavorskyi P.V., Pop O.M., Maslyuk V.T. Sensory
abilities of dosimetric materials under conditions of
parameter fluctuations: Monte Carlo method.
SPQEO. 2024. 27. P. 450-456.
https://doi.org/10.15407/spqeo27.04.450
| |
|
|