Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 175-182 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.175


References


1. Abitbol M.H., Ahmed Z., Barron D. et al. CMB-S4 Technology Book, First Edition. 2017. https://doi.org/10.48550/arXiv.1706.02464
2. Hailey-Dunsheath S., Shirokoff E., Barry P.S. et al. Status of SuperSpec: a broadband, on-chip millimeter-wave spectrometer. Proc. SPIE. 2014.
9153. id. 91530M (16 pp.). https://doi.org/10.1117/12.2057229
3. Pan Z., Barry P.S., Cecil T. et al. Measurement of dielectric loss in silicon nitride at centimeter and millimeter wavelengths. IEEE Trans. Appl. Superconduct. 2023. 33, No 5. Art No 1101707. https://doi.org/10.1109/TASC.2023.3264953
4. Ye Z., F?l?p A., Helgason ?.B. et al. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 2019. 44, No
13. P. 3326. https://doi.org/10.1364/OL.44.003326
5. Paik H., and Osborn K. D. Reducing quantum- regime dielectric loss of silicon nitride for superconducting quantum circuits, Appl. Phys. Lett.,
2010. 96, No. 7. https://doi.org/10.1063/1.3309703
6. Defrance F., Shu S., Beyer A. et al. Low intrinsic TLS loss hydrogenated amorphous silicon. Milli- meter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI. SPIE. 2022. P. PC121900D. https://doi.org/10.48550/arXiv.2412.09693
7. Buijtendorp B.T., Vollebregt S., Karatsu K. et al. Hydrogenated amorphous silicon carbide: A low- loss deposited dielectric for microwave to submillimeter wave superconducting circuits. Phys. Rev. Appl. 2022. 18, No 6. P. 064003. https:// doi.org/10.1103/PhysRevApplied.18.064003v
8. Samanta S., Maity A., Chatterjee S. et al. Rice- Bernasconi Gorkov-Eliashberg effect of giant dielectric permittivity in silica-based films containing interrupted silver nanowires. Trans. Indian Inst. Met. 2019. 72, No 8. P. 1963-1969. https://doi.org/10.1007/s12666-018-1524-4
9. Maity A., Samanta S., Roy S. et al. Giant dielectric constant of copper nanowires/amorphous SiO 2 composite thin films for supercapacitor application. ACS Omega. 2020. 5, No 21. P. 12421-12430. https://doi.org/10.1021/acsomega.0c01186
10. Evtukh A.A., Kizjak A.Yu., Bratus O.L. Impedance of nanocomposite SiO 2 (Si)&Fe x O y (Fe) thin films containing Si and Fe nanoinclusions. SPQEO. 2023.
26. P. 424-431. https://doi.org/10.15407/spqeo26.04.424
11. Kizjak A.Yu., Evtukh A.A., Bratus O.L. et al. Electron transport through composite SiO 2 (Si)& Fe x O y (Fe) thin films containing Si and Fe nano- clusters. J. Alloys Compd. 2022. 903. P. 163892. https://doi.org/10.1016/j.jallcom.2022.163892
12. Ilchenko V.V., Marin V.V., Vasyliev I.S. et al. Admittance spectroscopy using for the determina- tion of parameters of Si nanoclusters embedded in SiO 2 . 2014 IEEE 34th Int. Sci. Conf. on Electronics and Nanotechnology (ELNANO), 2014. P. 86-89. https://doi.org/10.1109/ELNANO.2014.6873969
13. Evtukh A., Bratus’ O., Ilchenko V. et al. Capacitive properties of MIS structures with SiO x &Si x O y N z films containing Si nanoclusters. J. Nano Res. 2016.
39. P. 162-168. https://doi.org/ 10.4028/www.scientific.net/JNanoR.39.162.
14. Zhang D., Wang R., Wen M. et al. Synthesis of ultra- long copper nanowires for high-performance trans- parent electrodes. J. Am. Chem. Soc. 2012. 134, No 35. P. 14283-14286. https://doi.org/10.1021/ja3050184
15. Bhattacharjee S., Banerjee A., Mazumder N. et al. Negative capacitance switching in size-modulated Fe 3 O 4 nanoparticles with spontaneous non-stoichio- metry: Confronting its generalized origin in non- ferroelectric materials. Nanoscale. 2020. 12, No 3. P. 1528-1540. https://doi.org/10.1039/C9NR07902E
16. Parravicini G.B., Stella A., Ungureanu M.C., Kofman R. Low-frequency negative capacitance effect in systems of metallic nanoparticles embed- ded in dielectric matrix. Appl. Phys. Lett. 2004. 85, No 2. P. 302-304. https://doi.org/10.1063/1.1772872
17. Evtukh A., Kizjak A., Bratus O. et al. Negative capacitance and dielectric constant of nanocom- posite SiAl z O x N y (Si) films with semiconductor nanoparticles. Nano Lett. 2024. 24, No 2. P. 617-622. https://doi.org/10.1021/acs.nanolett.3c03627
18. Elmahaishi M.F., Azis R.S., Ismail I., Muhammad F.D. A review on electromagnetic microwave ab- sorption properties: their materials and perfor- mance. J. Mater. Res. Technol. 2022. 20. P. 2188-2220. https://doi.org/10.1016/j.jmrt.2022.07.140
19. Zhang Y., Zhang Y., Li Y. et al. Facile design and permittivity control of reduced graphene oxide foam/TiO 2 3D composite towards lightweight and high-efficient microwave absorption. J. Alloys Compd. 2021. 889. P. 161695. https://doi.org/10.1016/j.jallcom.2021.161695
20. Liang H., Xing H., Qin M., Wu H. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe 3 O 4 @FeO composites as high-performance electromagnetic wave absorbing materials. Compos. A: Appl. Sci. Manuf. 2020. 135. P. 105959. https://doi.org/10.1016/j.compositesa.2020.105959
21. Lu Y., Yin Y., Mayers B.T., Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002. 2, No 3. P. 183-186. https://doi.org/10.1021/nl015681q
22. Santra S., Tapec R., Theodoropoulou N. et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir. 2001. 17, No 10. P. 2900-2906. https://doi.org/10.1021/la0008636
23. Tartaj P., Serna C.J. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J. Am. Chem. Soc. 2003. 125, No 51. P. 15754-15755. https://doi.org/10.1021/ja0380594
24. Ebrahimi-Tazangi F., Hekmatara S.H., Seyed-Yazdi J. Remarkable microwave absorption of GO-SiO 2 / Fe 3 O 4 via an effective design and optimized compo- sition. J. Alloys Compd. 2021. 854. P. 157213. https://doi.org/10.1016/j.jallcom.2020.157213
25. Jaiswal R., Agarwal K., Pratap V. et al. Microwave- assisted preparation of magnetic ternary core-shell nanofiller (CoFe 2 O 4 /rGO/SiO 2 ) and their epoxy nano- composite for microwave absorption properties. Mater. Sci. Eng.: B. 2020. 262. P. 114711. https://doi.org/10.1016/j.mseb.2020.114711
26. Kelsall R.W., Hamley I.W., Geoghegan M. (Eds). Nanoscale Science and Technology, 1st ed. Wiley,
2005. https://doi.org/10.1002/0470020873
27. Bratus O.L. Structural properties of nanocomposite SiO 2 (Si) films obtained by ion-plasma sputtering and thermal annealing. SPQEO. 2011. 14. P. 247-255. https://doi.org/10.15407/spqeo14.02.247
28. Poplavko Yu.M. Electronic Materials: Principles and Applied Science. Elsevier, Amsterdam, 2019.
29. Javid M., Zhou Y., Wang D. et al. Magnetic behavior, electromagnetic multiresonances, and microwave absorption of the interfacial engineered Fe@FeSi/SiO 2 nanocomposite. ACS Appl. Nano Mater. 2018. 1, No 3. P. 1309-1320. https://doi.org/10.1021/acsanm.8b00055
30. Bratus O., Kizjak A., Kykot A. et al. Influence of the annealing temperature on the electrical conductivity mechanisms SiO x (Si)&Fe y O z (Fe) films. J. Alloys Compd. 2025. 1011. P. 178383. https://doi.org/10.1016/j.jallcom.2024.178383