Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 175-182 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.175
References
1. Abitbol M.H., Ahmed Z., Barron D. et al. CMB-S4
Technology Book, First Edition. 2017.
https://doi.org/10.48550/arXiv.1706.02464
2. Hailey-Dunsheath S., Shirokoff E., Barry P.S. et al.
Status of SuperSpec: a broadband, on-chip
millimeter-wave spectrometer. Proc. SPIE. 2014.
9153. id. 91530M (16 pp.).
https://doi.org/10.1117/12.2057229
3. Pan Z., Barry P.S., Cecil T. et al. Measurement of
dielectric loss in silicon nitride at centimeter and
millimeter wavelengths. IEEE Trans. Appl.
Superconduct. 2023. 33, No 5. Art No 1101707.
https://doi.org/10.1109/TASC.2023.3264953
4. Ye Z., F?l?p A., Helgason ?.B. et al. Low-loss
high-Q silicon-rich silicon nitride microresonators
for Kerr nonlinear optics. Opt. Lett. 2019. 44, No
13. P. 3326. https://doi.org/10.1364/OL.44.003326
5. Paik H., and Osborn K. D. Reducing quantum-
regime dielectric loss of silicon nitride for
superconducting quantum circuits, Appl. Phys. Lett.,
2010. 96, No. 7. https://doi.org/10.1063/1.3309703
6. Defrance F., Shu S., Beyer A. et al. Low intrinsic
TLS loss hydrogenated amorphous silicon. Milli-
meter, Submillimeter, and Far-Infrared Detectors
and Instrumentation for Astronomy XI. SPIE. 2022.
P. PC121900D.
https://doi.org/10.48550/arXiv.2412.09693
7. Buijtendorp B.T., Vollebregt S., Karatsu K. et al.
Hydrogenated amorphous silicon carbide: A low-
loss deposited dielectric for microwave to
submillimeter wave superconducting circuits. Phys.
Rev. Appl. 2022. 18, No 6. P. 064003. https://
doi.org/10.1103/PhysRevApplied.18.064003v
8. Samanta S., Maity A., Chatterjee S. et al. Rice-
Bernasconi Gorkov-Eliashberg effect of giant
dielectric permittivity in silica-based films
containing interrupted silver nanowires. Trans.
Indian Inst. Met. 2019. 72, No 8. P. 1963-1969.
https://doi.org/10.1007/s12666-018-1524-4
9. Maity A., Samanta S., Roy S. et al. Giant dielectric
constant of copper nanowires/amorphous SiO 2
composite thin films for supercapacitor application.
ACS Omega. 2020. 5, No 21. P. 12421-12430.
https://doi.org/10.1021/acsomega.0c01186
10. Evtukh A.A., Kizjak A.Yu., Bratus O.L. Impedance
of nanocomposite SiO 2 (Si)&Fe x O y (Fe) thin films
containing Si and Fe nanoinclusions. SPQEO. 2023.
26. P. 424-431.
https://doi.org/10.15407/spqeo26.04.424
11. Kizjak A.Yu., Evtukh A.A., Bratus O.L. et al.
Electron transport through composite SiO 2 (Si)&
Fe x O y (Fe) thin films containing Si and Fe nano-
clusters. J. Alloys Compd. 2022. 903. P. 163892.
https://doi.org/10.1016/j.jallcom.2022.163892
12. Ilchenko V.V., Marin V.V., Vasyliev I.S. et al.
Admittance spectroscopy using for the determina-
tion of parameters of Si nanoclusters embedded in
SiO 2 . 2014 IEEE 34th Int. Sci. Conf. on Electronics
and Nanotechnology (ELNANO), 2014. P. 86-89.
https://doi.org/10.1109/ELNANO.2014.6873969
13. Evtukh A., Bratus’ O., Ilchenko V. et al. Capacitive
properties of MIS structures with SiO x &Si x O y N z
films containing Si nanoclusters. J. Nano Res. 2016.
39. P. 162-168. https://doi.org/
10.4028/www.scientific.net/JNanoR.39.162.
14. Zhang D., Wang R., Wen M. et al. Synthesis of ultra-
long copper nanowires for high-performance trans-
parent electrodes. J. Am. Chem. Soc. 2012. 134, No 35.
P. 14283-14286. https://doi.org/10.1021/ja3050184
15. Bhattacharjee S., Banerjee A., Mazumder N. et al.
Negative capacitance switching in size-modulated
Fe 3 O 4 nanoparticles with spontaneous non-stoichio-
metry: Confronting its generalized origin in non-
ferroelectric materials. Nanoscale. 2020. 12, No 3.
P. 1528-1540. https://doi.org/10.1039/C9NR07902E
16. Parravicini G.B., Stella A., Ungureanu M.C.,
Kofman R. Low-frequency negative capacitance
effect in systems of metallic nanoparticles embed-
ded in dielectric matrix. Appl. Phys. Lett. 2004. 85,
No 2. P. 302-304. https://doi.org/10.1063/1.1772872
17. Evtukh A., Kizjak A., Bratus O. et al. Negative
capacitance and dielectric constant of nanocom-
posite SiAl z O x N y (Si) films with semiconductor
nanoparticles. Nano Lett. 2024. 24, No 2. P. 617-622. https://doi.org/10.1021/acs.nanolett.3c03627
18. Elmahaishi M.F., Azis R.S., Ismail I., Muhammad
F.D. A review on electromagnetic microwave ab-
sorption properties: their materials and perfor-
mance. J. Mater. Res. Technol. 2022. 20. P. 2188-2220. https://doi.org/10.1016/j.jmrt.2022.07.140
19. Zhang Y., Zhang Y., Li Y. et al. Facile design and
permittivity control of reduced graphene oxide
foam/TiO 2 3D composite towards lightweight and
high-efficient microwave absorption. J. Alloys
Compd. 2021. 889. P. 161695.
https://doi.org/10.1016/j.jallcom.2021.161695
20. Liang H., Xing H., Qin M., Wu H. Bamboo-like
short carbon fibers@Fe3O4@phenolic resin and
honeycomb-like short carbon fibers@Fe 3 O 4 @FeO
composites as high-performance electromagnetic
wave absorbing materials. Compos. A: Appl. Sci.
Manuf. 2020. 135. P. 105959.
https://doi.org/10.1016/j.compositesa.2020.105959
21. Lu Y., Yin Y., Mayers B.T., Xia Y. Modifying the
surface properties of superparamagnetic iron oxide
nanoparticles through a sol-gel approach. Nano
Lett. 2002. 2, No 3. P. 183-186.
https://doi.org/10.1021/nl015681q
22. Santra S., Tapec R., Theodoropoulou N. et al.
Synthesis and characterization of silica-coated iron
oxide nanoparticles in microemulsion: The effect of
nonionic surfactants. Langmuir. 2001. 17, No 10.
P. 2900-2906. https://doi.org/10.1021/la0008636
23. Tartaj P., Serna C.J. Synthesis of monodisperse
superparamagnetic Fe/silica nanospherical
composites. J. Am. Chem. Soc. 2003. 125, No 51.
P. 15754-15755. https://doi.org/10.1021/ja0380594
24. Ebrahimi-Tazangi F., Hekmatara S.H., Seyed-Yazdi
J. Remarkable microwave absorption of GO-SiO 2 /
Fe 3 O 4 via an effective design and optimized compo-
sition. J. Alloys Compd. 2021. 854. P. 157213.
https://doi.org/10.1016/j.jallcom.2020.157213
25. Jaiswal R., Agarwal K., Pratap V. et al. Microwave-
assisted preparation of magnetic ternary core-shell
nanofiller (CoFe 2 O 4 /rGO/SiO 2 ) and their epoxy nano-
composite for microwave absorption properties.
Mater. Sci. Eng.: B. 2020. 262. P. 114711.
https://doi.org/10.1016/j.mseb.2020.114711
26. Kelsall R.W., Hamley I.W., Geoghegan M. (Eds).
Nanoscale Science and Technology, 1st ed. Wiley,
2005. https://doi.org/10.1002/0470020873
27. Bratus O.L. Structural properties of nanocomposite
SiO 2 (Si) films obtained by ion-plasma sputtering
and thermal annealing. SPQEO. 2011. 14. P. 247-255. https://doi.org/10.15407/spqeo14.02.247
28. Poplavko Yu.M. Electronic Materials: Principles
and Applied Science. Elsevier, Amsterdam, 2019.
29. Javid M., Zhou Y., Wang D. et al. Magnetic
behavior, electromagnetic multiresonances, and
microwave absorption of the interfacial engineered
Fe@FeSi/SiO 2 nanocomposite. ACS Appl. Nano
Mater. 2018. 1, No 3. P. 1309-1320.
https://doi.org/10.1021/acsanm.8b00055
30. Bratus O., Kizjak A., Kykot A. et al. Influence of
the annealing temperature on the electrical
conductivity mechanisms SiO x (Si)&Fe y O z (Fe)
films. J. Alloys Compd. 2025. 1011. P. 178383.
https://doi.org/10.1016/j.jallcom.2024.178383
| |
|
|