Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 232-238 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.232


References


1. Bonnassieux Y., Brabec C.J., Cao Y. et al. The 2021 flexible and printed electronics roadmap. Flex. Print. Electron. 2021. 6. P. 023001. https://doi.org/10.1088/2058-8585/abf986
2. Green M.A., Dunlop E.D., Yoshita M. et al. Solar cell efficiency tables (Version 64). Prog. Photovolt.: Res. Appl. 2024. 32, No 7. P. 425-441. https://doi.org/10.1002/pip.3831
3. Carron R., Nishiwaki S., Feurer T. et al. Advanced alkali treatments for high-efficiency Cu(In,Ga)Se 2 solar cells on flexible substrates. Adv. Energy Mater. 2019. 9, No 24. P. 1900408. https://doi.org/10.1002/aenm.201900408
4. Constantin C.P., Aflori M., Damian R.F., Rusu R.D. Biocompatibility of polyimides: A mini-review. Materials. 2019. 12. P. 3166. https://doi.org/10.3390/ma12193166
5. Bremaud D., Rudmann D., Bilger G. et al. Towards the development of flexible CIGS solar cells on polymer films with efficiency exceeding 15%. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005. 3-7 Jan. 2005, Lake Buena Vista, FL, USA. P. 223-226. https://doi.org/10.1109/PVSC9367.2005
6. Wu H., Huang Y.A., Yin Z.P. Flexible hybrid electronics: Enabling integration techniques and applications. Sci. China Technol. Sci. 2022. 60, No
9. P. 1995-2006. https://doi.org/10.1007/s11431-022-2074-8
7. Skorupa W., Schumann T., Rebohle L. Millisecond thermal processing using flash lamps for the advancement of thin layers and functional coatings. Surf. Coat. Technol. 2017. 314. P. 169-176. https://doi.org/10.1016/j.surfcoat.2016.08.010
8. Kim S.Y., Yoo H., Rana T.R. et al. Effect of crystal orientation and conduction band grading of absorber on efficiency of Cu(In,Ga)Se 2 solar cells grown on flexible polyimide foil at low temperature. Adv. Energy Mater. 2018. 8, No 26. P. 1801501. https://doi.org/10.1002/aenm.201801501
9. Severino N., Bednar N., Adamovic N. Guidelines for optimization of the absorber layer energy gap for high efficiency Cu(In,Ga)Se 2 solar cells. J. Mater. Sci. Chem. Eng. 2018. 6, No 4. P. 147-162. https://doi.org/10.4236/msce.2018.64015
10. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst.
1969. 2. P. 65-71. https://doi.org/10.1107/S0021889869006558
11. Rietveld H.M. The Rietveld method: A retro- spection. Z. Kristallogr. 2010. 225. P. 545-547. https://doi.org/10.1524/zkri.2010.1356
12. Balboul M.R., Schock H.W., Fayak S.A. et al. Correlation of structure parameters of absorber layer with efficiency of Cu(In, Ga)Se 2 solar cell. Appl. Phys. A. 2008. 92. P. 557-563. https://doi.org/10.1007/s00339-008-4630-z
13. Albert V. Band gap optimization in Cu(In 1-x Ga x )(Se 1-y S y ) 2 by controlled Ga and S incorporation during reaction of Cu-(In,Ga) intermetallics in H 2 Se and H 2 S. Thin Solid Films.
2009. 517. P. 2115-2120. https://doi.org/10.1016/j.tsf.2008.10.127
14. Liu C.P., Chang M.W., Chuang C.L. The effect of Ga 2 Se 3 doping ratios on structure, composition, and electrical properties of CuIn 0.5 Ga 0.5 Se 2 absorber formed by thermal sintering. Int. J. Photoenergy.
2013. 2013. P. 936364. http://doi.org/10.1155/2013/936364
15. Koutn? N., Holec D., Svoboda O.J. et al. Point defects stabilise cubic Mo-N and Ta-N. J. Phys. D: Appl. Phys. 2016. 49. P. 375303. http://doi.org/10.1088/0022-3727/49/37/375303
16. Sa?di H., Ben Alaya C., Boujmil M.F. et al. Physical properties of electrodeposited CIGS films on crystalline silicon: Application for photovoltaic heterojunction. Curr. Appl. Phys. 2019. 20, Issue 1. P. 29-36. https://doi.org/10.1016/j.cap.2019.09.015
17. Abdulrahman N.A., Haddad N.I.A. Braggs, Scherre, Williamson-Hall and SSP analyses to estimate the variation of crystallites sizes and lattice constants for ZnO nanoparticles synthesized at different tem- peratures. NeuroQuantology. 2020. 18, No 1. P. 53-63. https://doi.org/10.14704/nq.2020.18.1.NQ20107
18. Hariyanto B., Wardani D.A.P., Kurniawati N. et al. X-ray peak profile analysis of silica by Williamson- Hall and size-strain plot methods. J. Phys.: Conf. Ser. 2021. P. 012106. https://doi.org/10.1088/1742-6596/2019/1/012106
19. Prabhu Y.T., Rao K.V., Kumar V.S.S., Kumari B.S. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World Journal of Nano Science and Engineering. 2014. 4. P. 21-28. http://doi.org/ 10.1016/j.solidstatesciences.2010.11.024.
20. Patterson A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939. 56, No 10. P. 978-982. https://doi.org/10.1103/PhysRev.56.978
21. Kotbi A., Hartiti B., Fadili S. et al. Synthesis and characterization of sprayed CIGS thin films for photovoltaic application. Mater. Today: Proc. 2020. 24, Part 1. P. 66-70. https://doi.org/10.1016/j.matpr.2019.07.537
22. Palm J., Jost S., Hock R., Probst V. Raman spectroscopy for quality control and process optimization of chalcopyrite thin films and devices. Thin Solid Films. 2007. 515, No 15. P. 5913-5916. https://doi.org/10.1016/j.tsf.2006.12.162
23. Izquierdo-Roca V., Saucedo E., Ruiz C.M. et al. Raman scattering and structural analysis of electrodeposited CuInSe 2 and S-rich quaternary CuIn(S,Se) 2 semiconductors for solar cells. phys. status solidi (a). 2009. 206, No 5. P. 1001-1004. https://doi.org/10.1002/pssa.200881239
24. Izquierdo-Roca V., Fontan? X., ?lvarez-Garc?a J. et al. Electrodeposition based synthesis of S-rich CuIn(S,Se) 2 layers for photovoltaic applications: Raman scattering analysis of electrodeposited CuInSe 2 precursors. Thin Solid Films. 2009. 517, No 7. P. 2163-2166. https://doi.org/10.1016/j.tsf.2008.10.080
25. Sun L., Ma J., Yao N. et al. Copper content depen- dence of electrical properties and Raman spectra of Se-deficient Cu(In,Ga)Se 2 thin films for solar cell. J. Mater Sci: Mater Electron. 2016. 27. P. 9124-9130. https://doi.org/10.1007/s10854-016-4947-x