Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 232-238 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.232
References
1. Bonnassieux Y., Brabec C.J., Cao Y. et al. The
2021 flexible and printed electronics roadmap. Flex.
Print. Electron. 2021. 6. P. 023001.
https://doi.org/10.1088/2058-8585/abf986
2. Green M.A., Dunlop E.D., Yoshita M. et al. Solar
cell efficiency tables (Version 64). Prog.
Photovolt.: Res. Appl. 2024. 32, No 7. P. 425-441.
https://doi.org/10.1002/pip.3831
3. Carron R., Nishiwaki S., Feurer T. et al. Advanced
alkali treatments for high-efficiency Cu(In,Ga)Se 2
solar cells on flexible substrates. Adv. Energy
Mater. 2019. 9, No 24. P. 1900408.
https://doi.org/10.1002/aenm.201900408
4. Constantin C.P., Aflori M., Damian R.F., Rusu R.D.
Biocompatibility of polyimides: A mini-review.
Materials. 2019. 12. P. 3166.
https://doi.org/10.3390/ma12193166
5. Bremaud D., Rudmann D., Bilger G. et al. Towards
the development of flexible CIGS solar cells on
polymer films with efficiency exceeding 15%.
Conference Record of the Thirty-first IEEE
Photovoltaic Specialists Conference, 2005. 3-7 Jan.
2005, Lake Buena Vista, FL, USA. P. 223-226.
https://doi.org/10.1109/PVSC9367.2005
6. Wu H., Huang Y.A., Yin Z.P. Flexible hybrid
electronics: Enabling integration techniques and
applications. Sci. China Technol. Sci. 2022. 60, No
9. P. 1995-2006. https://doi.org/10.1007/s11431-022-2074-8
7. Skorupa W., Schumann T., Rebohle L. Millisecond
thermal processing using flash lamps for the
advancement of thin layers and functional coatings.
Surf. Coat. Technol. 2017. 314. P. 169-176.
https://doi.org/10.1016/j.surfcoat.2016.08.010
8. Kim S.Y., Yoo H., Rana T.R. et al. Effect of crystal
orientation and conduction band grading of absorber
on efficiency of Cu(In,Ga)Se 2 solar cells grown on
flexible polyimide foil at low temperature. Adv.
Energy Mater. 2018. 8, No 26. P. 1801501.
https://doi.org/10.1002/aenm.201801501
9. Severino N., Bednar N., Adamovic N. Guidelines
for optimization of the absorber layer energy gap
for high efficiency Cu(In,Ga)Se 2 solar cells. J.
Mater. Sci. Chem. Eng. 2018. 6, No 4. P. 147-162.
https://doi.org/10.4236/msce.2018.64015
10. Rietveld H.M. A profile refinement method for
nuclear and magnetic structures. J. Appl. Cryst.
1969. 2. P. 65-71.
https://doi.org/10.1107/S0021889869006558
11. Rietveld H.M. The Rietveld method: A retro-
spection. Z. Kristallogr. 2010. 225. P. 545-547.
https://doi.org/10.1524/zkri.2010.1356
12. Balboul M.R., Schock H.W., Fayak S.A. et al.
Correlation of structure parameters of absorber
layer with efficiency of Cu(In, Ga)Se 2 solar cell.
Appl. Phys. A. 2008. 92. P. 557-563.
https://doi.org/10.1007/s00339-008-4630-z
13. Albert V. Band gap optimization in
Cu(In 1-x Ga x )(Se 1-y S y ) 2 by controlled Ga and S
incorporation during reaction of Cu-(In,Ga)
intermetallics in H 2 Se and H 2 S. Thin Solid Films.
2009. 517. P. 2115-2120.
https://doi.org/10.1016/j.tsf.2008.10.127
14. Liu C.P., Chang M.W., Chuang C.L. The effect of
Ga 2 Se 3 doping ratios on structure, composition, and
electrical properties of CuIn 0.5 Ga 0.5 Se 2 absorber
formed by thermal sintering. Int. J. Photoenergy.
2013. 2013. P. 936364.
http://doi.org/10.1155/2013/936364
15. Koutn? N., Holec D., Svoboda O.J. et al. Point
defects stabilise cubic Mo-N and Ta-N. J. Phys. D:
Appl. Phys. 2016. 49. P. 375303.
http://doi.org/10.1088/0022-3727/49/37/375303
16. Sa?di H., Ben Alaya C., Boujmil M.F. et al.
Physical properties of electrodeposited CIGS films
on crystalline silicon: Application for photovoltaic
heterojunction. Curr. Appl. Phys. 2019. 20, Issue 1.
P. 29-36. https://doi.org/10.1016/j.cap.2019.09.015
17. Abdulrahman N.A., Haddad N.I.A. Braggs, Scherre,
Williamson-Hall and SSP analyses to estimate the
variation of crystallites sizes and lattice constants
for ZnO nanoparticles synthesized at different tem-
peratures. NeuroQuantology. 2020. 18, No 1. P. 53-63. https://doi.org/10.14704/nq.2020.18.1.NQ20107
18. Hariyanto B., Wardani D.A.P., Kurniawati N. et al.
X-ray peak profile analysis of silica by Williamson-
Hall and size-strain plot methods. J. Phys.: Conf.
Ser. 2021. P. 012106. https://doi.org/10.1088/1742-6596/2019/1/012106
19. Prabhu Y.T., Rao K.V., Kumar V.S.S., Kumari B.S.
X-ray analysis by Williamson-Hall and size-strain
plot methods of ZnO nanoparticles with fuel
variation. World Journal of Nano Science and
Engineering. 2014. 4. P. 21-28. http://doi.org/
10.1016/j.solidstatesciences.2010.11.024.
20. Patterson A. The Scherrer formula for X-ray particle
size determination. Phys. Rev. 1939. 56, No 10. P.
978-982. https://doi.org/10.1103/PhysRev.56.978
21. Kotbi A., Hartiti B., Fadili S. et al. Synthesis and
characterization of sprayed CIGS thin films for
photovoltaic application. Mater. Today: Proc. 2020.
24, Part 1. P. 66-70.
https://doi.org/10.1016/j.matpr.2019.07.537
22. Palm J., Jost S., Hock R., Probst V. Raman
spectroscopy for quality control and process
optimization of chalcopyrite thin films and devices.
Thin Solid Films. 2007. 515, No 15. P. 5913-5916.
https://doi.org/10.1016/j.tsf.2006.12.162
23. Izquierdo-Roca V., Saucedo E., Ruiz C.M. et al.
Raman scattering and structural analysis of
electrodeposited CuInSe 2 and S-rich quaternary
CuIn(S,Se) 2 semiconductors for solar cells. phys.
status solidi (a). 2009. 206, No 5. P. 1001-1004.
https://doi.org/10.1002/pssa.200881239
24. Izquierdo-Roca V., Fontan? X., ?lvarez-Garc?a J.
et al. Electrodeposition based synthesis of S-rich
CuIn(S,Se) 2 layers for photovoltaic applications:
Raman scattering analysis of electrodeposited
CuInSe 2 precursors. Thin Solid Films. 2009. 517,
No 7. P. 2163-2166.
https://doi.org/10.1016/j.tsf.2008.10.080
25. Sun L., Ma J., Yao N. et al. Copper content depen-
dence of electrical properties and Raman spectra of
Se-deficient Cu(In,Ga)Se 2 thin films for solar cell.
J. Mater Sci: Mater Electron. 2016. 27. P. 9124-9130. https://doi.org/10.1007/s10854-016-4947-x
| |
|
|