Semiconductor Physics, Quantum Electronics and Optoelectronics, 5 (3) P. 243-246 (2002).


References

1. P. N. Gajjar, B. Y. Thakore and A. R. Jani, Total crystal energy and heat of solution of alkali based binary alloys // Acta Phys. Polo. A, 99 (5),pp. 565 - 578 (2001).
https://doi.org/10.12693/APhysPolA.99.565
2. Minal. H. Patel, A. M. Vora, P. N. Gajjar and A. R. Jani, Fermi energy and Fermi surface distortion of the Cs-K, Cs-Rb and Rb-K binary systems // Physica B, 304, pp. 152 - 158 (2001).
https://doi.org/10.1016/S0921-4526(01)00548-8
3. B. Y. Thakore, P. N. Gajjar and A. R. Jani, Collective modes in Ca70Mg 30glass // Bull. Mater. Sci., 23 (1), pp.5 - 9(2000).
https://doi.org/10.1007/BF02708603
4. P. N. Gajjar, B. Y. Thakore and A. R. Jani, Total crystal energy of some simple metals // Rom. J. Phys., 43 (9-10),pp.747 -753 (1998).
5. V. T. Shvets and E. V. Belov, Choice of pseudopotential and electroresistance of simple disordered metals // Acta Phys. Polo.A, 96, pp. 741-750 (1999).
https://doi.org/10.12693/APhysPolA.96.741
6. Akita Morita, T. Soma and T. Takeda, Perturbation theory of covalent crystals: I. Calculation of cohesive energy and compressibility // J. of Phys. Soc. of Japan, 32 (1), pp. 29 - 37(1972).
https://doi.org/10.1143/JPSJ.32.29
7. G. P. Srivastava, The Physics of Phonons, IOP Publishing Ltd, Bristol (1990).
8. T. Soma, The electronic theory of III-V and II-VI tetrahedral compounds: I. Crystal energy and bulk modulus // J. Phys. C, 11(13), pp. 2669-2678 (1978).
https://doi.org/10.1088/0022-3719/11/13/014
9. T. Soma, Local Heine - Abarenkov Model potential for covalent crystals // Phys. Stat. Sol. (b),86, pp. 263 - 268 (1978).
https://doi.org/10.1002/pssb.2220860130
10. N. W. Ashcroft, Electron - ion pseudopotentials in metals // Phys. Lett., 23 (1), pp. 48-50 (1966).
https://doi.org/10.1016/0031-9163(66)90251-4
11. V. Heine and I. V. Abarenkov, A new method for the electronic structure of metals // Phil. Mag., 9, pp. 451-465 (1964).Table 3. The bulk modulus of Si (in 10 12 dyne/cm2) Table 4. The bulk modulus of Ge (in 1012 dyne/cm2)
https://doi.org/10.1080/14786436408222957
12. Masafumi Senoo, Hisao Mii and Ikuya Fujishiro, Calculations of pressure-volume relations for some cubic metals in pseudopotential method // J. of Phys. Soc. of Japan, 41 (5),pp.1562-1569 (1976).
https://doi.org/10.1143/JPSJ.41.1562
13. V. N. Patel, Minal H. Patel, B. Y. Thakore, P. N. Gajjar and A. R. Jani, On the application of pseudo-alloy-atom model to the lithium based binary alkali alloys // Solid State Physics (India), 42 C, pp. 283-284 (1999).
14. W. A. Harrison, Elementary electronic structure, World scientific, Singapore (1998).
https://doi.org/10.1142/4121
15. J. Hubbard, The description of the collective motions in terms of many - body perturbation theory II. The correlation energy of a free - electron gas // Proc. Roy. Soc., London A, 243, pp.336-352 (1958).
https://doi.org/10.1098/rspa.1958.0003
16. L. J. Sham, A calculation of the phonon frequencies in Sodium // Proc. Roy. Soc., London, A, 283 (1392), pp. 33 - 49 (1965).
https://doi.org/10.1098/rspa.1965.0005
17. D.J.W. Geldart and S.H. Vosko, The screening function of an interaction electron gas // Can. J. Phys., 44 (9), pp.2137-2171(1966).
https://doi.org/10.1139/p66-174
18. L. Kleinman, New approximation for screened exchange and the dielectric constants of metals // Phys. Rev., 160 (3), pp.585-590 (1967).
https://doi.org/10.1103/PhysRev.160.585
19. D. Langreth, Approximate screening function in metals // Phys.Rev., 181 (2), pp. 753-762 (1969).
https://doi.org/10.1103/PhysRev.181.753
20. P. Vashishta and K. S. Singwi, Electron correlations at metallic densities // Phys. Rev. B, 6 (3), pp. 875-887 (1972).
https://doi.org/10.1103/PhysRevB.6.875
21. R. Taylor, A simple useful analytical form of the static electron gas dielectric function // J. Phys. F, 8, pp. 1699-1702(1978).
https://doi.org/10.1088/0305-4608/8/8/011