Semiconductor Physics, Quantum Electronics and Optoelectronics, 8 (3) P. 092-099 (2005).


References

1. T.A. Yourre, L.I. Rudaya, N.V. Klimova, and V.V. Shamanin, Organic materials for photovoltaic and light-emitting devices // Semiconductors 37, N 7, p. 807-815 (2003).
https://doi.org/10.1134/1.1592855
2. P. Peumans, A. Yakimov, and S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells // J. Appl. Phys.93, N 7, p. 3693-3723 (2003).
https://doi.org/10.1063/1.1534621
3. C. Waldaul, P. Schilinsky, J. Hauch, C.J. Brabec, Material and device concepts for organic photo-voltaics: towards competitive efficiencies // Thin Solid Films451-452, p. 503-507 (2004).
https://doi.org/10.1016/j.tsf.2003.11.043
4. J. Simon, J.-J. Andre, Molecular semiconductors. Springer-Verlag, Berlin Heidelberg (1983).
5. V. Dyakonov, Electrical aspect of operation of polymer-fullerene solar cells // Thin Solid Films 451-452, p. 493-497(2004).
https://doi.org/10.1016/j.tsf.2003.11.063
6. A. Gravino, N.S. Sariciftci, Double-cablepolymers for fullerene based organic optoelectronic application // J. Mater. Chem.12, p. 1931-1943 (2002).
https://doi.org/10.1039/b201558g
7. T. Umeda, Y. Hashimoto, H. Mizukami, A. Fujii and K. Yoshino, Fabrication of interpenetrating semilayered structure of conducting polymer and fullerene by solvent method and its photovoltaic properties // Jpn J. Appl. Phys.44, N 6A, p. 4155-4160 (2005).
https://doi.org/10.1143/JJAP.44.4155
8. N. Camaioni, L. Carlaschelli, A. Geri, M. Maggini, G. Possamai and G. Ridolfi, Solar cells based on poly(3-alkyl)thiophenes and [60] fullerene: a comparative study // J. Mater. Chem.12, p. 2065-2070 (2002).
https://doi.org/10.1039/b201338j
9. L.J.A. Koster, E.C.P. Smits, V.D. Michaletchi, and P.W.M. Blom. Device model for the operation of polymer/fullerene bulk heterojunction solar cells // Phys. Rev. E 72, 085205 (2005).
https://doi.org/10.1103/PhysRevB.72.085205
10. A.J. Mozer, G. Dennler, N.S. Sariciftci, M. Westerling, A. Pivricas, R. Osterbacka, G. Juska, Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polumer/fullerene bulk heterojunction solar cells // Phys.Rev. E 72, 035217 (2005).
https://doi.org/10.1103/PhysRevB.72.035217
11. E.V. Basiuk (Golovataja-Dzhymbeeva), V.A. Basiuk, E. Alvarez-Zauco, J.M. Saniger, A.F. Shevchuk, A.V. Koval'chuk, N.M. Golovataya, Chemical polymerization of C60 fullerene films with 1,8-octanediamine vapor, their spectral and photo-conductivity properties. March 9-11, 2005, Vienna, Austria, p.1-8.
12. O.I. Shevaleevski, O.V. Pavlov, A.A. Tsvetkov, Processes of a photoconduction in aggregates on a basis ะก60and phthalocyanine // Chem. Phys.19, N 12, p. 49-52 (2000).
13. O. Boiko, A. Verbitsky, Photovoltaic properties of C60 / liquid crystal composites and heterostructures // Mol. Cryst. Liquid Cryst. 384, p. 85-91(2002).
https://doi.org/10.1080/713738779
14. A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene // J. Chem. Phys. 20, N 5, p. 2255-2261 (1979).
https://doi.org/10.1063/1.437729
15. A.V. Koval'chuk, Low frequency spectroscopy as investigation method of the electrode-liquid interface // Functional Materials 5, N 3, p. 428-430 (1998).
16. A.V. Koval'chuk. Generation of charge carrier and formation of antisymmetric double electric layers in glycerine // J. Chem. Phys. 108, N 19, p. 8190-8194 (1998).
https://doi.org/10.1063/1.476174
17. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials. Clarendon Press, Oxford (1971).
18. W. Haase, S. Wrobel, Relaxation Phenomena. Springer, New York (2003).
https://doi.org/10.1007/978-3-662-09747-2