Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (3) P. 004-011 (2006).
DOI: https://doi.org/10.15407/spqeo9.03.004


References

1. C. Pickering, M.I.J. Beale, D.J. Robbins, P.J. Pearson and R. Greef, Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon // J. Phys. C: Solid State Phys. 17(35), p. 6535-6552 (1984).
https://doi.org/10.1088/0022-3719/17/35/020
2. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers // Appl. Phys. Lett. 57 (10), p. 1046-1048 (1990).
https://doi.org/10.1063/1.103561
3. O. Bisi, S. Ossicini and L. Paresi, Porous silicon: a quantum sponge structure for silicon based optoelectronics // Surf. Sci. Repts 38, p. 1-126 (2000).
https://doi.org/10.1016/S0167-5729(99)00012-6
4. L. Canham, Properties of Porous Silicon, INSPEC, IEE, London, 1997.
5. V. Lehman and U. Gosele, Porous silicon: Quantum sponge structures grown via a self-adjusting etching process // Adv. Mater. 4 (2), p. 114-116(1992).
https://doi.org/10.1002/adma.19920040212
6. H. Mimura, T. Futagi, T. Matsumoto and Y. Kanimutsu, A visible light-emitting diode using a PN junction of porous silicon and micro-crystalline silicon carbide // J. Non-Cryst. Solids 164-166, p. 949-952 (1993).
https://doi.org/10.1016/0022-3093(93)91154-U
7. Z.C. Feng and R. Tsu (Eds.), Porous silicon. World Scientific, NJ & London, 1994.
https://doi.org/10.1142/9789812812995
8. K. Barla, R. Herino, G. Pomchil and J.C. Pfister, Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction // J. Cryst. Growth 68 (3), p. 727-732 (1984).
https://doi.org/10.1016/0022-0248(84)90111-8
9. Y. Boumaiza, Z. Hadjoub, A. Doghmane and L. Deboub, Porosity effects on different measured acoustic parameters of porous silicon // J. Mater. Sci. Lett. 18, p. 295-297 (1999).
https://doi.org/10.1023/A:1006618920416
10. G.M. Da Fonseca, J.M. Saurel, A. Foucaran, and J. Camassel, E. Massone, T. Talierco and Y. Boumaiza, Acoustic investigation of porous silicon layers // J. Mater. Sci. 30,p. 35-39 (1995).
https://doi.org/10.1007/BF00352128
11. G.M. Da Fonseca, J.M. Saurel, A. Foucaran, E. Massone, T. Talierco and J. Camassel, Acoustic microscopy invetigation of porous silicon // Thin Solid Films 225, p. 155-158 (1995).
https://doi.org/10.1016/0040-6090(94)05643-R
12. D. Bellet, P. Lamagère, A. Vincent and Y. Brechet, Nanoindentation investigation of the Young's modulus of porous silicon // J. Appl. Phys. 80 (7), p. 3772-3776 (1996).
https://doi.org/10.1063/1.363305
13. H.J. Fan, M.H. Kuok, S.C. Ng, R. Boukherroub, J.-M. Baribeau, J.W. Fraser and D.J. Lockwood, Brillouin scattering of acoustic modes in porous silicon films // Phys. Rev. B 65, p. 165330.1-8 (2002).
https://doi.org/10.1103/PhysRevB.65.165330
14. D.J. Lockwood, M.H. Kuok, S.C. Ng and Z.L. Rang, Surface and guided acoustic phonons in porous silicon // Phys. Rev. B 60 (12), p. 8878-8882 (1999).
https://doi.org/10.1103/PhysRevB.60.8878
15. G.T. Andrews, J. Zuk, H. Klefte, M.J. Clouter and E. Nossarzewska-Orlowska, Elastic characterization of a supported porous silicon layer by Brillouin scattering // Appl. Phys. Lett. 69 (9), p. 1217-1219 (1996).
https://doi.org/10.1063/1.117416
16. M.G. Beghi, C.E. Bottani, G. Ghislouti, G. Amato and L. Boarino, Brillouin scattering of porous silicon // Thin Solid Films 297 (1/2), p. 110-113 (1997).
https://doi.org/10.1016/S0040-6090(96)09425-4
17. A. Briggs (ed.), Advances in acoustic microscopy, Plenum, New York, 1995.
https://doi.org/10.1007/978-1-4615-1873-0
18. A. Briggs, Acoustic microscopy, Clarendon, Oxford, 1992.
https://doi.org/10.1088/0034-4885/55/7/001
19. P.V. Zinin, Quantitative acoustic microscopy of solids (Chap. 8) in: Handbook of elastic properties of solids, liquids and gases / Eds. M. Levy, H.E. Bass and R.R. Stern, p. 187-226. Academic Press, New York, 2001.
https://doi.org/10.1016/B978-012445760-7/50010-1
20. K.K. Phani, S.K. Niyogi, A.K. Maitra and M. Roychaudhury, Strength and elastic modulus of a porous brittle solid: an acousto-ultrasonic study // J. Mater. Sci. 21, p. 4335-4341 (1986).
https://doi.org/10.1007/BF01106552
21. V. Roque, B. Cros, D. Baron and P. Dehaudt, Effects of porosity in uranium dioxide on microacoustic and elastic properties // J. Nucl. Mater. 277, p. 211-216 (2000).
https://doi.org/10.1016/S0022-3115(99)00192-0
22. A.K. Maitra and K.K. Phani, Ultrasonic evaluation of elastic parameters of sintered powder compacts // J. Mater. Sci. 29, p. 4415-4419 (1994).
https://doi.org/10.1007/BF00376263
23. A. Halimaoui, C. Oules and G. Bomchil, Electroluminescence in the visible range during anodic oxidation of porous silicon films // Appl. Phys. Lett. 59(3), p. 304-306 (1991).
https://doi.org/10.1063/1.105578
24. J. Kushibiki and N.Chubachi, Material characterization by line-focus-beam acoustic microscopy // IEEE Sonics Ultrason.SU-32, p. 189-212 (1985).
https://doi.org/10.1109/T-SU.1985.31586
25. A. Kulik, P. Richard, S. Sathish and G. Gremaud, Continuous wave transmission measuring scanning acoustic microscopy, in: Acoustical Imaging 19, Eds. H. Ermert and H.-P. Harjes, p. 697-701. Plenum Press, New York, 1992.
https://doi.org/10.1007/978-1-4615-3370-2_110
26. A. Doghmane and Z. Hadjoub, Theoritical and experimental investigations of acoustic materials signatures via variable-illumination lens-stop system // J. Phys. D: Appl. Phys. 30, p. 2777-2782 (1997).
https://doi.org/10.1088/0022-3727/30/20/001
27. A. Doghmane, Z. Hadjoub and F. Hadjoub, Nondestructive acoustic micro-characterisation of heteropolysiloxanes thin films // Thin Solid Films, 310, p. 203-207 (1997).
https://doi.org/10.1016/S0040-6090(97)00354-4
28. Y.-C. Lee, J.D. Achenbach, M.J. Nystrom, S.R. Gilbert, B.A. Block and B.W. Wessels, Line-focus acoustic microscopy measurements of Nb2O5/MgO and BaTiO3/LaAlO3 thin-film/ substrate configurations // IEEE Trans. Ultrason. Ferroelec. Freq. Control. 42, p. 376-380 (1995).
https://doi.org/10.1109/58.384445
29. S. Bouhedja, I. Hadjoub, A. Doghmane and Z. Hadjoub, Investigation of Rayleigh wave attenuation via annular lenses in acoustic microscopy // Phys. status solidi (a) 202 (6), p. 1025-1032 (2005).
https://doi.org/10.1002/pssa.200420013
30. I.R. Smith and H.K. Wickramasinghe, SAW attenuation measurements in the acoustic microscope // Electron. Lett. 18(22), p. 955-956 (1982).
https://doi.org/10.1049/el:19820656
31. L.A. Viktorov, Rayleigh and Lamb Waves. Plenum, New York, 1967.
https://doi.org/10.1007/978-1-4899-5681-1
32. F. Hadjoub, Z. Hadjoub, A. Gacem, I. Beldi and A. Doghmane, Surface tilting effects on elastic constants in acoustic microscopy investigations // Electron. Lett. 34(18), p. 1797-1799 (1998).
https://doi.org/10.1049/el:19981263
33. M.F. Ashby and D.R.H. Jones, Matériaux: Propriétés et Applications. Dunod, Paris, 1996.
34. Y-C. Lee, J.O. Kim and J.D. Achenbach, Acoustic microscopy measurements of elastic constants and mass density // IEEE Trans. Ultrason. Ferroelec. Freq. Control. 42, p. 253-264 (1995).
https://doi.org/10.1109/58.365239
35. L.F. Nielson, Elastic properties of two phase materials // Mater. Sci. Eng. 52, p. 39-62 (1982).
https://doi.org/10.1016/0025-5416(82)90068-4
36. P.V. Zinin, O. Lefeuvre, A. Briggs, B.D. Zeller, P. Cawley, A. Kinloch, X. Zhou, and G. Thompson, Determination of density and elastic constants of a thin phosphoric acid-anodized oxide film by acoustic microscopy // J. Acoust. Soc. Amer. 106 (5), p. 2560-2567 (1999).
https://doi.org/10.1121/1.428087
37. Z. Hadjoub, K. Alami, A. Doghmane, J. M. Saurel and J. Attal, Acoustic microscopy skimming mode generation using small apertures lenses // Electron. Lett. 27(11), p. 981-982 (1991).
https://doi.org/10.1049/el:19910612