Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (3) P. 079-082 (2006).
DOI: https://doi.org/10.15407/spqeo9.03.079


References

1. D.C. Look, B. Claflin, Ya.I. Alivov, and S.J. Park, The future of ZnO light emitters // Phys. status solidi (a) 201, p. 2203-2212 (2004).
https://doi.org/10.1002/pssa.200404803
2. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Markoç, A comprehensive revive of ZnO materials and devices // J. Appl. Phys.98, p. 041301-041404 (2005).
https://doi.org/10.1063/1.1992666
3. V.A. Kaprpina, V.I. Lazorenko, C.V. Lashkarev et al., Zinc oxide - analogue of GaN with new perspective possibilities // Cryst. Res. Technol. 39, p. 980-992 (2004).
https://doi.org/10.1002/crat.200310283
4. S.Y. Myong, S.J. Baik, Ch.H. Lee, W.Y. Cho and K.S. Lim, Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material // Jpn J. Appl. Phys. 36, p. L1078-L1081 (1997).
https://doi.org/10.1143/JJAP.36.L1078
5. M. Hiramatsu, K. Imaeda, N. Horio, and M. Nawata // J. Vac. Sci. Technol.A16, p. 669 (1998).
https://doi.org/10.1116/1.581085
6. K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE // J. Cryst. Growth 209, p. 526-531 (2000).
https://doi.org/10.1016/S0022-0248(99)00613-2
7. S.B. Zang, S.-H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO // Phys. Rev. B 63, p. 075205-075211 (2001).
https://doi.org/10.1103/PhysRevB.63.075205
8. K. Minegishi, Y. Koiwai, K. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition // Jpn J. Appl. Phys. 36, p. L1453-L1455 (1997).
https://doi.org/10.1143/JJAP.36.L1453
9. H.W. Liang, Y.M. Lu, D.Z. Shen, Y.C. Liu, J.F. Yan, C.X. Shan, B.H. Li, Z.Z. Zhang, J.Y. Zhang, X.W. Fan, P-type ZnO thin films, prepared by plasma molecular beam epitaxy using radical NO // Phys. status solidi (a) 202, p. 1060-1065 (2005).
https://doi.org/10.1002/pssa.200420012
10. Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W. White, Synthesis of p-type ZnO films // J. Cryst. Growth 216, p. 330-334 (2000).
https://doi.org/10.1016/S0022-0248(00)00437-1
11. V. Vaithianathan, Y.H. Lee, B.-T. Lee, S. Hishita, and S.S. Kim, Doping of As, P and N in laser deposited ZnO films // J. Cryst. Growth 287, p.85-88 (2006).
https://doi.org/10.1016/j.jcrysgro.2005.10.048
12. M. Joseph, H. Tabata and T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping // Jpn J. Appl. Phys. 38, p. L1205-L1207 (1999).
https://doi.org/10.1143/JJAP.38.L1205
13. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger and S. Niki, Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy // J. Cryst. Growth 237-239, p. 503-508 (2002).
https://doi.org/10.1016/S0022-0248(01)01952-2
14. Z.-Z. Ye. F. Zhu-Ge, J.-G. Lu, Z.-H. Zhang, L.-P. Zhu, B.-H. Zhao, J.-Y. Huang, Preparation of p-type ZnO films by Al+N-codoping method // J. Cryst. Growth 265, p. 127-132 (2004).
https://doi.org/10.1016/j.jcrysgro.2003.12.059
15. A.N. Georgobiani, M.B. Kotlyarevsky, and I.V. Rogozin, Phase content and photoluminescence of ZnO layers obtained on ZnSe substrates by radical-beam gettering epitaxy // Nucl. Phys. B (Proc. Suppl.)78, p. 484-487 (1999).
https://doi.org/10.1016/S0920-5632(99)00591-5
16. A.N. Georgobiani, M.B. Kotlyarevsky, and I.V. Rogozin, Methods of high-energy chemistry in the technology of wide-gap chalcogenide semiconductors // Inorganic Materials 41,Suppl. 1, p. S1-S18 (2004).
https://doi.org/10.1023/B:INMA.0000036325.88593.d7
17. X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, R.P.H. Chang, Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition // J. Cryst. Growth 226, p. 123-129 (2001).
https://doi.org/10.1016/S0022-0248(01)01367-7
18. A.N. Georgobiani, M.B. Kotlyarevskii, V.V. Kidalov, L.S. Lepnev, I.V. Rogozin, Luminescence of native-defect p-type ZnO // Neorganich. Mater. 37, p. 1095-1098 (2001).
https://doi.org/10.1023/A:1012581221305
19. A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, First-principles study of native point defects in ZnO // Phys. Rev. B 61, p. 15019-15027 (2000).
https://doi.org/10.1103/PhysRevB.61.15019
20. X. Yang, G. Du, X. Wang et al., Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al2O3 by metal-organic chemical vapor deposition // J. Cryst. Growth 252, p. 275-278 (2003).
https://doi.org/10.1016/S0022-0248(03)00898-4
21. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy // Appl. Phys. Lett. 81, p. 1830 (2002).
https://doi.org/10.1063/1.1504875
22. K. Tonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, R. Sauer, Donor-acceptor pair transitions in ZnO substrate material // Physica B 308-310, p. 945-948 (2001).
https://doi.org/10.1016/S0921-4526(01)00877-8
23. S. Yamauchi, Y. Goto, T. Hariu, Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy // J. Cryst. Growth 260, p. 1-6 (2004).
https://doi.org/10.1016/j.jcrysgro.2003.08.002
24. C.H. Park, S.B. Zang, and S.-H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective // Phys. Rev. B 66, p. 073202-073204 (2002).
https://doi.org/10.1103/PhysRevB.66.073202
25. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects // Nucl. Instrum. & Meth. Phys. Res. B 199, p. 286-290 (2003).
https://doi.org/10.1016/S0168-583X(02)01425-8
26. C. Simpson and J.F. Cordaro, Characterization of deep levels in zinc oxide // J. Appl. Phys.63, p. 1781-1783 (1988).
https://doi.org/10.1063/1.339919
27. M.B. Kotlyarevsky, I.V. Rogozin, and A.V. Marakhovsky, Kinetics of high-temperature defect formation in ZnO in the stream of oxygen radicals // NATO Sci. Ser. II: Math., Phys. and Chem. 194, p. 25-34 (2005).
https://doi.org/10.1007/1-4020-3475-X_3