Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (3) P. 061-064 (2007).
DOI:
https://doi.org/10.15407/spqeo10.03.061
References
1. M.K. Sheinkman, N.E. Korsunskaya, and S.S. Ostapenko, Ultrasound treatment as a new way for defect engineering in semiconductor materials and devices // Romanian Journal of Information Science and Technology 2, p. 173-187 (1999). | | 2. Ya.M. Olikh, R.K. Savkina, and O.I. Vlasenko, Acoustostimulated activation of bound defects in CdHgTe alloys // Semiconductors 33, p. 398-401 (1999) https://doi.org/10.1134/1.1187701 | | Ya.M. Olikh, R.K. Savkina, and O.I. Vlasenko, Acoustodynamic transformation of the defect structure in Hg1-xCdxTe alloys // Semiconductor Physics, Quantum Electronics and Optoelectronics 3, p. 304-307 (2000). | | 3. R.K. Savkina and A.B. Smirnov, Temperature rise in crystals subjected to ultrasonic influence // Infrar. Phys. & Technology 46, p. 388-393 (2005). https://doi.org/10.1016/j.infrared.2004.06.008 | | 4. A. Dillenz, T. Zweschper, and G. Busse, Progress in ultrasound phase thermography // Proc. SPIE 4360, p. 574-579 (2001). https://doi.org/10.1117/12.421042 | | 5. R.K. Savkina and A.I. Vlasenko, Sonic-stimulated change of the charge carrier concentration in nCdxHg1-xTe alloys with different initial state of the defect structure // Phys. status solidi (b) 229, p. 275-278 (2002). https://doi.org/10.1002/1521-3951(200201)229:1<275::AID-PSSB275>3.0.CO;2-G | | 6. K.A. Myslivets and Ya.M. Olikh // Fiz. Tverd. Tela 32, p. 2912 (1990) (in Russian) [Sov. Phys. Solid State 32, p. 1692 (1990)]. | | 7. R.K. Savkina, A.B. Smirnov and F.F. Sizov, Effect of the high-frequency sonication on the charge carrier transport in LPE and MBE HgCdTe layers // Semicond. Sci. Technol. 22, p. 97-102 (2007). https://doi.org/10.1088/0268-1242/22/2/016 | | 8. J.P. Hirth and J. Lothe, Theory of Dislocations. McGraw-Hill, New York, 1967. | | 9. S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, and R.E. DeWames, Effect of the dislocation density on minority-carrier lifetime in molecular beam epitaxial HgCdTe // Appl. Phys. Lett. 59, p. 2718- 2720 (1991). https://doi.org/10.1063/1.105895 | | 10. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck et al., Effect of dislocations on the electrical and optical properties of long-wavelength infrared HgCdTe photovoltaic detectors // J. Vac. Sci. Technology 10, p. 1499-1506 (1992). https://doi.org/10.1116/1.586278 | | 11. R.L. List, Formation and electrical effects of process induced dislocations in HgCdTe // J. Vac. Sci. Technology 10, p. 1651-1657 (1992). https://doi.org/10.1116/1.586263 | | 12. P.O. Renault, J.F. Barbot, P. Giault et al. // J. Phys. III France 5, p. 1383 (1995). https://doi.org/10.1051/jp3:1995198 | | 13. J.P. Hirth and H. Ehrenreich, Charged dislocations and jogs in Hg1-хCdхTe and other II-VI compounds // J. Vac. Sci. Technology 5, p. 367-372 (1983). https://doi.org/10.1116/1.573222 | | 14. S.M. Ryvkin, Photoelectric phenomena in semiconductors. Fizmatgiz, Moscow, 1963 (in Russian). | | 15. A.V. Lubchenko, E.A. Sal'kov, and F.F. Sizov, Physical properties of the semiconductor infrared photoelectronics. Naukova Dumka, Kyiv, 1984 (in Russian). | |
|
|