Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (3) P. 272-275 (2009).
DOI: https://doi.org/10.15407/spqeo12.03.272


References

1. W. Szymanska, T. Dietl, Electron scattering and transport phenomena in small-gap zinc-blende semiconductors // J. Phys. Chem. Solids 39, p. 1025-1040 (1978).
https://doi.org/10.1016/0022-3697(78)90155-5
2. R.J. Iwanowski, T. Dietl, W. Szymanska, Electron mobility and electron scattering in CdxHg1-xSe crystals // J. Phys. Chem. Solids 39, p. 1059-1070 (1978).
https://doi.org/10.1016/0022-3697(78)90157-9
3. T. Dietl, W. Szymanska, Electron scattering in HgSe // J. Phys. Chem. Solids 39, p. 1041-1057 (1978).
https://doi.org/10.1016/0022-3697(78)90156-7
4. D.A. Nelson, J.G. Broerman, C.J. Summers, S.R. Whitsett, Electron transport in Hg1-xCdxSe alloy system // Phys. Rev. 18, p. 1658-1672 (1978).
https://doi.org/10.1103/PhysRevB.18.1658
5. O.P. Malyk, Electron scattering on the short-range potential in narrow gap CdxHg1-xTe // Mater. Sci. & Engineering B 129, p. 161-171 (2006).
https://doi.org/10.1016/j.mseb.2006.01.007
6. J.J. Dubowski, Disorder scattering in CdxHg1-xTe mixed crystals // Phys. status solidi (b) 85, p. 663- 672 (1978).
https://doi.org/10.1002/pssb.2220850231
7. P.A. Fedders, Strain scattering of electrons in piezoelectric semiconductors // J. Appl. Phys. 54, p. 1804-1807 (1983).
https://doi.org/10.1063/1.332814
8. O.P. Malyk, Construction of the exact solution of the stationary Boltzmann equation for the semiconductor with isotropic dispersion law // WSEAS Trans. Math. 3, p. 354-357 (2004).
9. E.M. Conwell, V.F. Weisskopf, Theory of impurity scattering in semiconductors // Phys. Rev. 77, p. 388-390 (1950).
https://doi.org/10.1103/PhysRev.77.388
10. A. Lehoczky, D.A. Nelson, C.R. Whitsett, Elastic constants of mercury selenide // Phys. Rev. 188, p. 1069-1073 (1969).
https://doi.org/10.1103/PhysRev.188.1069