Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (3) P. 302-308 (2009).
DOI:
https://doi.org/10.15407/spqeo12.03.302
References
1. H.W. Schoсk, Solar cells based on CuInSe2 and related compounds: recent progress in Europe // Sol. Energy Mater. 34, p. 19-26 (1994). https://doi.org/10.1016/0927-0248(94)90020-5 | | 2. U. Rau, H.W. Schock, Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges // Appl. Phys. A 69, p. 131-147 (1999). https://doi.org/10.1007/s003390050984 | | 3. J.E. Jaffe, A. Zunger, Electronic structure of the ternary chalcopyrite semiconductors // Phys. Rev B 28, p. 5822-5846 (1983). https://doi.org/10.1103/PhysRevB.28.5822 | | 4. J.E. Jaffe, A. Zunger, Theory of band-gap anomaly in ABC2 chalcopyrite semiconductors // Phys. Rev. B 29, p. 1882-1906 (1984). https://doi.org/10.1103/PhysRevB.29.1882 | | 5. H.T. Shaban, M. Mobarak, M.M. Nassary, Characterization of CuInSe2 single crystal // Physica B 389, p. 351-354 (2007). https://doi.org/10.1016/j.physb.2006.07.016 | | 6. V.A. Chaldyshev, G.F. Karavaev, To a question about energy spectra structure in chalcopyrite crystals // News of the High Education Institutions 2, p. 28-30 (1964). | | 7. G.F. Karavaev, A.S. Poplavnoy, Investigation of the energy spectra for the electrons in semiconductor compounds with chalcopyrite lattice using a perturbation theory // Fizika tverdogo tela 8, p. 2144-2148 (1966) (in Russian). | | 8. H. Neumann, W. Kissinger, H. Sobotta, V. Riede , G. Kühn, Hole effective masses in CuInSe2 // Phys. status solidi (b) 108 (2), p. 483-487 (2006). https://doi.org/10.1002/pssb.2221080224 | | 9. P.M. Gorley, O.O. Galochkina, Yu.V. Vorobiev, J. González-Hernández, Temperature dependence of kinetic coefficients and thermal voltage for рCuInSe2 crystals // Thermoelectric 2, p. 48-56 (2008). | | 10. P.P. Horley, V.V. Gorley, P.M. Gorley, J. GonzalezHernandez, Yu.V. Vorobiev, On correlation of CdS and CdSe valence band parameters // Thin Solid Films 480-481, p. 373-376 (2005). https://doi.org/10.1016/j.tsf.2004.11.096 | | 11. E. Gutsсhe, E. Jahne, Spin-orbit splitting of the valence band of wurtzite type crystals // Phys. status solidi (b) 19, p. 823-832 (1967). https://doi.org/10.1002/pssb.19670190235 | | 12. E. Jahne, E. Gutsсhe, Valence band structure of wurtzite type crystals // Phys. status solidi 21, p. 57-68 (1967). https://doi.org/10.1002/pssb.19670210103 | | 13. K. Yoodee, J.C. Woolley, V. Sa-yakanit, Effects of p-d hybridization on the valence band of I-III-VI2 chalcopyrite semiconductors // Phys. Rev. B 30 (10), p. 5904-5915 (1984). https://doi.org/10.1103/PhysRevB.30.5904 | | 14. W.R.L. Lambrecht, A.V. Rodina, S. Limpijumnong, D. Segall, B.K. Meyer, Valenceband ordering and magneto-optic exciton fine structure in ZnO // Phys. Rev. B 65, 075207-1- 075207-12 (2002). https://doi.org/10.1103/PhysRevB.65.075207 | | 15. L.C. Lew Yan Voon, M. Willatzen, M. Cardona, N.E. Christencen, Terms linear in k in the band structure of wurtzite-type semiconductors // Phys. Rev. B 53(16), p. 10703-10714 (1996). https://doi.org/10.1103/PhysRevB.53.10703 | | 16. E.I. Rashba, Symmetry of the energy bands in wurtzite crystals // Fizika tverdogo tela 1(3), p. 407-421 (1959) (in Russian). | | 17. M. Cardona, Band parameters of semiconductors with zincblende, wurtzite, and germanium structure // J. Phys. Chem. Solids 24, p. 1543-1555 (1963). https://doi.org/10.1016/0022-3697(63)90097-0 | | 18. J.L. Shay, В. Tell, H.M. Kasper, L.M. Schiavone, Electronic structure of AgInSe2 and CuInSe2 // Phys. Rev. B 7, p. 4485-4490 (1973). https://doi.org/10.1103/PhysRevB.7.4485 | | 19. A. Continenza, R.M. Wentzcovitch, A.J. Freeman, Theoretical investigation of graphitic BeO // Phys. Rev. B 41(6), p. 3540-3544 (1990). https://doi.org/10.1103/PhysRevB.41.3540 | | 20. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics. Mir Publ., Moscow, 1976 (in Russian). | | 21. P.M. Gorley, V.V. Khomyak, Yu.V. Vorobiev, J. Gonzalez-Hernandez, P.P. Horley, O.O. Galochkina, Electron properties of n- and pCuInSe2 // Solar Energy 82, p. 100-105 (2008). https://doi.org/10.1016/j.solener.2007.07.004 | | 22. C. Rincon, R. Marquez, Defect physics of the CuInSe2 chalcopyrite semiconductors // J. Phys. Chem. Solids 60, p. 1865-1873 (1999). https://doi.org/10.1016/S0022-3697(99)00190-0 | | 23. H. Neumann, R.D. Tomlinson, Band-gap narrowing in n-type CuInSe2 single crystals // Solid State Communs 57, p. 591-594 (1986). https://doi.org/10.1016/0038-1098(86)90328-5 | | 24. I. Hernandez-Calderon, Optical properties and electronic structure of wide band gap II-VI semiconductors, Chap. 4, In: II-VI Semiconductor Materials and their Applications, Eds. M.C. Tamargo. Taylor and Francis, New York, 2002, p. 113-170. https://doi.org/10.1201/9780203751305-4 | | 25. J.D. Park, B.H. Chang, I.H. Choi, Thermoelectric power of p-CuInSe2 single crystals // J. Korean Phys. Soc. 22, p. 113-213 (1989). | | 26. M.I. Alonso, K. Wakita, J. Pascual, M.Garriga, N. Yamamoto, Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2 and CuGaS2 // Phys. Rev. B 63, 075203-1-075203-13 (2001). https://doi.org/10.1103/PhysRevB.63.075203 | | 27. T. Irie, S. Endo, S. Kimura, Electrical properties of p- and n-type CuInSe2 single crystals // Jpn J. Appl. Phys. 18, p. 1303-1310 (1979). https://doi.org/10.1143/JJAP.18.1303 | | 28. O. Madelung, U. Rössler, M. Schulz, Zinc oxide (ZnO) electron effective masses, 41B, In: II-VI and I-VII Compounds; Semimagnetic Compounds. Springer-Verlag, 2006. | | 29. J.L. Shay, E. Buehler, Electroreflectance study of the energy-band structure of CdSnP2 // Phys. Rev. B 2(10), p. 4104-4109 (1970). https://doi.org/10.1103/PhysRevB.2.4104 | | 30. J.E. Rowe, J.L. Shay, Extension of the quasi-cubic model to ternary chalcopyrite crystals // Phys. Rev. B 3(2), p. 451-453 (1971). https://doi.org/10.1103/PhysRevB.3.451 | |
|
|