Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 3. P. 287-293.
https://doi.org/10.15407/spqeo14.03.287



References 

1. W.F. Kuhs, R. Nitsche, and K. Scheunemann, Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I). Mat. Res. Bull. 11, p. 1115-1124 (1976).
https://doi.org/10.1016/0025-5408(76)90010-6
 
2. I.P. Studenyak, M. Kranjčec, and M.V. Kurik, Urbach rule and disordering processes in () xx16 5 yy1 IBrSeSPCu − − superionic conductors. J. Phys. Chem. Solids, 67, p. 807-817 (2006).
https://doi.org/10.1016/j.jpcs.2005.10.184
 
3. A. Haznar, A. Pietraszko, and I.P. Studenyak, Xray study of the superionic phase transition in Cu6PS5Br. Solid State Ionics, 119, p. 31-36 (1999).
https://doi.org/10.1016/S0167-2738(98)00479-2
 
4. A. Gagor, A. Pietraszko, and D. Kaynts, Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J. Solid State Chem. 178, p. 3366-3375 (2005).
https://doi.org/10.1016/j.jssc.2005.08.015
 
5. R.B. Beeken, J.J. Garbe, and N.R. Petersen, Cation mobility in the Cu6PS5X (X = Cl, Br, I) argyrodites. J. Phys. Chem. Solids, 64, p. 1261-1264 (2003).
https://doi.org/10.1016/S0022-3697(03)00086-6
 
6. S. Fiechter and E. Gmelin, Thermochemical data of argyrodite-type ionic conductors: Cu6PS5Hal (Hal = Cl, Br, I). Thermochimica Acta, 85, p. 155-158 (1985).
https://doi.org/10.1016/0040-6031(85)85553-2
 
7. V. Samulionis, J. Banys, Y. Vysochanskii, and I. Studenyak, Investigation of ultrasonic and acoustoelectric properties of ferroelectricsemiconductor crystals. Ferroelectrics, 336, p. 29-38 (2006).
https://doi.org/10.1080/00150190600695255
 
8. I.P. Studenyak, R.Yu. Buchuk, V.O. Stephanovich, S. Kökényesi, and M. Kis-Varga, Luminescent properties of Cu6PS5I nanosized superionic conductors. Radiation Measurements, 42, p. 788-791 (2007).
https://doi.org/10.1016/j.radmeas.2007.02.016
 
9. I.P. Studenyak, V.Yu. Izai, V.O. Stefanovich, V.V. Panko, P. Kúš, and A. Plecenik, On the Urbach rule in sulphur-implanted Cu6PS5I 292 Semiconductor Physics, Quantum Electronics & Optoelectronics, 2011. V. 14, N 3. P. 287-293. superionic conductors. J. Phys. Chem. Solids, 71, p. 988-992 (2010).
https://doi.org/10.1016/j.jpcs.2010.04.007
 
10. F. Urbach, The long-wavelength edge of photographic sensitivity and electronic absorption of solids. Phys. Rev. 92, p. 1324-1326 (1953).
https://doi.org/10.1103/PhysRev.92.1324
 
11. M.V. Kurik, Urbach rule (Review). Phys. Status Solidi (a), 8, p. 9-30 (1971).
https://doi.org/10.1002/pssa.2210080102
 
12. H. Sumi and A. Sumi, The Urbach-Martiensen rule revisited. J. Phys. Soc. Japan, 56, p. 2211-2220 (1987).
https://doi.org/10.1143/JPSJ.56.2211
 
13. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, and T. Tiedje, Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, p. 3540-3542 (1997).
https://doi.org/10.1063/1.119226
 
14. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, and K.J. Reeson, Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78, p. 1958-1963 (1995).
https://doi.org/10.1063/1.360167
 
15. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, p. 1480-1483 (1981).
https://doi.org/10.1103/PhysRevLett.47.1480