1. W.F. Kuhs, R. Nitsche, and K. Scheunemann, Vapour
growth and lattice data of new compounds with icosahedral structure of
the type Cu6PS5Hal (Hal = Cl, Br, I). Mat. Res. Bull. 11, p. 1115-1124
(1976). https://doi.org/10.1016/0025-5408(76)90010-6
2.
I.P. Studenyak, M. Kranjčec, and M.V. Kurik, Urbach rule and
disordering processes in () xx16 5 yy1 IBrSeSPCu − − superionic
conductors. J. Phys. Chem. Solids, 67, p. 807-817 (2006). https://doi.org/10.1016/j.jpcs.2005.10.184
3.
A. Haznar, A. Pietraszko, and I.P. Studenyak, Xray study of the
superionic phase transition in Cu6PS5Br. Solid State Ionics, 119, p.
31-36 (1999). https://doi.org/10.1016/S0167-2738(98)00479-2
4.
A. Gagor, A. Pietraszko, and D. Kaynts, Diffusion paths formation for
Cu+ ions in superionic Cu6PS5I single crystals studied in terms of
structural phase transition. J. Solid State Chem. 178, p. 3366-3375
(2005). https://doi.org/10.1016/j.jssc.2005.08.015
5.
R.B. Beeken, J.J. Garbe, and N.R. Petersen, Cation mobility in the
Cu6PS5X (X = Cl, Br, I) argyrodites. J. Phys. Chem. Solids, 64, p.
1261-1264 (2003). https://doi.org/10.1016/S0022-3697(03)00086-6
6.
S. Fiechter and E. Gmelin, Thermochemical data of argyrodite-type ionic
conductors: Cu6PS5Hal (Hal = Cl, Br, I). Thermochimica Acta, 85, p.
155-158 (1985). https://doi.org/10.1016/0040-6031(85)85553-2
7.
V. Samulionis, J. Banys, Y. Vysochanskii, and I. Studenyak,
Investigation of ultrasonic and acoustoelectric properties of
ferroelectricsemiconductor crystals. Ferroelectrics, 336, p. 29-38
(2006). https://doi.org/10.1080/00150190600695255
8.
I.P. Studenyak, R.Yu. Buchuk, V.O. Stephanovich, S. Kökényesi, and M.
Kis-Varga, Luminescent properties of Cu6PS5I nanosized superionic
conductors. Radiation Measurements, 42, p. 788-791 (2007). https://doi.org/10.1016/j.radmeas.2007.02.016
9.
I.P. Studenyak, V.Yu. Izai, V.O. Stefanovich, V.V. Panko, P. Kúš, and
A. Plecenik, On the Urbach rule in sulphur-implanted Cu6PS5I 292
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2011.
V. 14, N 3. P. 287-293. superionic conductors. J. Phys. Chem. Solids,
71, p. 988-992 (2010). https://doi.org/10.1016/j.jpcs.2010.04.007
10.
F. Urbach, The long-wavelength edge of photographic sensitivity and
electronic absorption of solids. Phys. Rev. 92, p. 1324-1326 (1953). https://doi.org/10.1103/PhysRev.92.1324
12. H. Sumi and A. Sumi, The Urbach-Martiensen rule revisited. J. Phys. Soc. Japan, 56, p. 2211-2220 (1987). https://doi.org/10.1143/JPSJ.56.2211
13.
M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, and T. Tiedje,
Optical absorption edge of semi-insulating GaAs and InP at high
temperatures. Appl. Phys. Lett. 70, p. 3540-3542 (1997). https://doi.org/10.1063/1.119226
14.
Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, and K.J. Reeson,
Optical absorption study of ion beam synthesized polycrystalline
semiconducting FeSi2. J. Appl. Phys. 78, p. 1958-1963 (1995). https://doi.org/10.1063/1.360167
15.
G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder
and the optical-absorption edge of hydrogenated amorphous silicon.
Phys. Rev. Lett. 47, p. 1480-1483 (1981). https://doi.org/10.1103/PhysRevLett.47.1480