Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N
3. P. 302-307.
https://doi.org/10.15407/spqeo14.03.302
References
1. N.A. Goryunova and B.T. Kolomiets. Zhurnal Tekhnich. Fiziki, 25, p. 984 (1955), in Russian. 2. K. Tanaka, Y. Osaka, M. Sugi, et al. J. NonCryst. Solids, 12, p. 100 (1973). https://doi.org/10.1016/0022-3093(73)90057-4 3. A.E. Owen, A.P. Firth and P.J.S. Ewen. Phil. Mag. B, 52, p. 347 (1985). https://doi.org/10.1080/13642818508240606 4. R. Zallen, Physics of Amorphous Solids. Wiley, New York, 1983. https://doi.org/10.1002/3527602798 5. E.A. Davis. J. Non-Cryst. Solids, 71, p. 113 (1985). https://doi.org/10.1016/0022-3093(85)90280-7 6. A.H. Moharram, A.A. Othman, H.H. Amer, et al. J. Non-Cryst. Solids, 352, p. 2187 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.055 7. M. Yamaguchi. Phil. Mag. 51, p. 651 (1985). https://doi.org/10.1080/13642818508243153 8. S.S. Fouad, A. Ammar, M. Abo-Ghazala. Physica B, 229, p. 249 (1997). https://doi.org/10.1016/S0921-4526(96)00850-2 9. E. Mooser, W.B. Pearson. Prog. Semicond. 5, p. 103 (1960). 10. A.F. Ioffe and A.R. Regel. Prog. Semicond. 4, p. 239 (1960). 11. P. Kumar, K. Singh. Chalcogenide Lett. 4, No.11, p. 127 (2007). 12. A.K. Varshneya, A.N. Sreeram, D.R. Swiler. Phys. Chem. Glasses, 34, p. 179 (1992). 13. S.S. Fouad. Vacuum, 52, p. 505 (1999). https://doi.org/10.1016/S0042-207X(98)00339-X 14. G.H. Frischat, U. Brokmeir, A. Rosskamp. J. Non-Cryst. Solids, 50, p. 263 (1982). https://doi.org/10.1016/0022-3093(82)90272-1 15. A. Dahshan, K.A. Aly. Phil. Mag. 88, No.3, p. 361 (2008). https://doi.org/10.1080/14786430701846214 16. L. Tichy and H. Ticha. Mater. Lett. 21, p. 313 (1994). https://doi.org/10.1016/0167-577X(94)90196-1 17. L. Tichy and H. Ticha. J. Non-Cryst. Solids, 189, p. 141 (1995). https://doi.org/10.1016/0022-3093(95)00202-2 18. L. Pauling. J. Phys. Chem. 58, p. 662 (1954); https://doi.org/10.1021/j150518a015 The Nature of the Chemical Bond. New York, Cornell University Press, 1960. 19. S.A. Fayek and S.S. Fouad. Vacuum, 52, p. 359 (1998). https://doi.org/10.1016/S0042-207X(98)00322-4 20.
L. Brewer, Electronic Structure and Alloy Chemistry of the Transition
Elements, Beck P.A. (editor). InterScience, New York, 1963, p. 222. 21. N.F. Mott, E.A. Davis, R.A. Street. Phil. Mag. 32, p. 961 (1975). https://doi.org/10.1080/14786437508221667 22. M.F. Thorpe. J. Non-Cryst. Solids, 182, p. 135 (1995). https://doi.org/10.1016/0022-3093(94)00545-1 23. S.S. Fouad. Vacuum, 52, p. 505 (1999). https://doi.org/10.1016/S0042-207X(98)00339-X 24. S. Mahadevan, A. Giridhar and A.K. Singh. J. Non-Cryst. Solids, 169, p. 133 (1994). https://doi.org/10.1016/0022-3093(94)90232-1 25. S.S. Fouad, A.H. Ammar and M. Abo-Ghazala. Vacuum, 48, p. 181 (1997). https://doi.org/10.1016/S0042-207X(96)00299-0 26. H. Fritzsche. Phil. Mag. B, 68, p. 561 (1993). https://doi.org/10.1080/13642819308217935 27. A. Dahshan, H.H. Amer and K.A. Aly. J. Phys. D: Appl. Phys. 41, 215401 (2008). https://doi.org/10.1088/0022-3727/41/21/215401 28. S.R. Elliot, Physics of Amorphous Solids. Longman Inc, New York, 134 (1984). 29. P. Sharma, M. Vashistha and I.P. Jain. Chalcogenide Lett. 2(11), p. 115 (2005). 30. L. Pauling, The Nature of the Chemical Bond, 3rd ed. Cornell University Press, NY, 1960, p. 91. 31. L. Tichy, A. Triska, H. Ticha, et al. Solid State Communs. 41, p. 751 (1982). https://doi.org/10.1016/0038-1098(82)91131-0 32. J. Bicermo and S.R. Ovshinsky. J. Non-Cryst. Solids, 74, p. 75 (1985). https://doi.org/10.1016/0022-3093(85)90402-8 33. S.A. Fayek. J. Phys. Chem. Solids, 62, p. 653 (2001). https://doi.org/10.1016/S0022-3697(00)00076-7 34. D.R. Goyal and A.S. Maan. J. Non-Cryst. Solids, 183, p. 182 (1995). https://doi.org/10.1016/0022-3093(94)00550-8
|