Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 3. P. 339-343.
https://doi.org/10.15407/spqeo14.03.339



References 

1. L.D. De Loach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, Transition metal–doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quantum Electron. 32, p. 885 (1996).
https://doi.org/10.1109/3.502365
 
2. G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Schaffers, J.–O. Ndap, X. Ma, A. Burger, Continuous–wave broadly tunable Cr2+:ZnSe laser. Opt. Lett. 24, p. 19 (1999).
https://doi.org/10.1364/OL.24.000019
 
3. A. Sennaroglu, A.O. Konca and C.R. Pollock, Continuous–wave power performance of a 2.47–μm Cr2+:ZnSe laser: experiment and modeling. IEEE J. Quantum Electron. 36, p. 1199 (2000).
https://doi.org/10.1109/3.880661
 
4. T.J. Garrig, G.B. Wagner, A. Sennaroglu, J.Y. Jeong, and C.R. Pollock, Mode–locked Cr2+:ZnSe laser. Opt. Lett. 25, p. 168 (2000).
https://doi.org/10.1364/OL.25.000168
 
5. M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kuck, V.I. Levchenko, and V.N. Yakimovich, 1.9-mm and 2.0-mm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe. Opt. Lett. 27, p. 1034 (2002).
https://doi.org/10.1364/OL.27.001034
 
6. T. Sorokina, Cr2+–doped II–VI materials for lasers and nonlinear optics. Opt. Mater. 26, p. 395 (2004).
https://doi.org/10.1016/j.optmat.2003.12.025
 
7. S. Mirov, V. Fedorov, I. Moskalev, D. Martishkin, and Ch. Kim, Progress in Cr2+ and Fe2+ doped mid–IR laser materials. Laser & Photon. Rev. 4, p. 21 (2010).
https://doi.org/10.1002/lpor.200810076
 
8. J. E. Williams, J.T. Goldstein, V.V. Fedorov, D.V. Martishkin, I.S. Moskalev, R.P. Camata, and S.B. Mirov, Mid–IR laser oscillation in Cr2+:ZnSe planar waveguide. Opt. Express, 18, p. 25999 (2010).
https://doi.org/10.1364/OE.18.025999
 
9. S.B. Mirov, V.V. Fedorov, K. Graham, I.S. Moskalev, V.V. Badikov, and V. Panyutin, Erbium fiber laser–pumped continuous–wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers // Opt. Lett. 27, p. 909 (2002).
https://doi.org/10.1364/OL.27.000909
 
10. I.T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K.I. Schaffers, Broadly tunable compact continuous–wave Cr2+:ZnS laser. Opt. Lett. 27, p. 1040 (2002).
https://doi.org/10.1364/OL.27.001040
 
11. J. Jaeck, R. Haidar, E. Rosencher, M. Caes, M. Tauvy, S. Collin, N. Bardou, J.L. Polouard, F. Pardo, and P. Lemasson, Room–temperature electroluminescence in the mid–infrared (2–3 μm) from bulk chromium–doped ZnSe. Opt. Lett. 31, p. 3501 (2006).
https://doi.org/10.1364/OL.31.003501
 
12. Y.O. Ono, Electroluminescent Displays. World Scientific, Singapore, 1995.
https://doi.org/10.1142/2504
 
13. A.V. Vasiliyev, N.A. Vlasenko, Z.L. Denisova, Ya.F. Kononets, A.I. Riskin, and A.Ya. Chomyak, Electroluminescent emitters on the region of 1.8–2.7 μm. Optoelektronika Poluprovodn. Tekhnika, 25, p. 68 (1993), in Russian.
 
14. N.A. Vlasenko, Z.L. Denisova, Ya.F. Kononets, L.I. Veligura, and Yu.A. Tsyrkunov, Near–infrared–emitting ZnS:Er and ZnS(Se):Cr TFEL devices. J. SID, 12, p. 179 (2004).
https://doi.org/10.1889/1.1811441
 
15. N.A. Vlasenko, P.F. Oleksenko, M.A. Mukhlyo, L.I. Veligura, and Z.L. Denisova, Stimulated emission of Cr2+ ions in ZnS:Cr thin–film electroluminescent structures. Semiconductor Physics, Quantum Electronics & Optoelectronics, 12, p. 362 (2009).
 
16. N.A. Vlasenko, P.F. Oleksenko, Z.L. Denisova, M.A. Mukhlyo, and L.I. Veligura, Cr–related energy levels and mechanism of Cr2+ ion photorecharge in ZnS:Cr. Phys. status solidi (b) 245, p. 2550 (2008).
https://doi.org/10.1002/pssb.200844044