Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 3. P. 239-246.
DOI: https://doi.org/
10.15407/spqeo15.03.239



References

1. I.E. Molodetskaia, S.V. Kozitsky, D.D. Polishchuk, Features of structure formation of zinc sulfide produced by self-propagating high-temperature synthesis. Izvestiia AN USSR. Neorganich. materialy, 27(6), p. 1142-1146 (1991), in Russian.
 
2. Yu.V. Vorobyov, V.N. Zakharchenko and S.V. Kozitsky, Electrical properties of zinc sulfide produced by self-propagating high-temperature synthesis. Quantum Electronics, (4), p. 73-79 (1995).
 
3. N.P. Golubeva and M.V. Fok, Luminescence of ZnS crystals with p-type conduction. Journal of Applied Spectroscopy, 43(6), p. 1340-1342 (1985).
https://doi.org/10.1007/BF00665302
 
4. N.P. Golubeva and M.V. Fok, The oxygen-associated luminescence of impurity-free zinc. Journal of Applied Spectroscopy, 17(2), p. 1025-1030 (1972).
https://doi.org/10.1007/BF00635152
 
5. N.K. Morozova, V.A. Kuznetsov, M.V. Fok, Zinc Sulfide: Preparation and Optical Properties. Nauka, Moscow (1987), in Russian.
 
6. A.K. Mc-Curdy, Phonon focusing and phonon conduction in hexagonal crystals in the boundary-scattering regime. Phys. Rev. B, 9(2), p. 466-482 (1974).
https://doi.org/10.1103/PhysRevB.9.466
 
7. V.V. Zubritskii, Phonon focusing in CdSe, ZnS, and ZnO crystals. Technical Physics, 67(6), p. 639-643 (1997).
https://doi.org/10.1134/1.1258594
 
8. E.I. Perov, Thermodynamics and kinetics of processes of synthesis of compounds with alternative content and materials based on them. Diss. for degree of Doctor of chemistry sci.: Code 02.00.04; RGB OD 71:05-2/36 2004, Tomsk, (in Russian).
 
9. I.V. Tananaev, V.B. Fedorov, E.G. Kalashnikov, Physics-and-chemistry of energy-saturated media. Uspekhi Khimii, 56(2), p. 107-120 (1987), in Russian.
https://doi.org/10.1070/RC1987v056n02ABEH003260
 
10. P.M. Zorky, Symmetry of Molecules and Crystalline Structures, ed. M.A. Poraj-Koshits. Moscow University Publishing House, 1986 (in Russian).
 
11. V.L. Ginzburg, Theory of ferroelectric phenomena. Physics-Uspekhi, 38(8), p. 490-525 (1949).
 
12. J.M. Poplavko, L.P. Pereverzev, I.P. Raevsky, Physics of Active Dielectrics. Rostov n/D, Publishing house of the South Federal University, 2008.
 
13. D.N. Shevarenkov, A.F. Shchurov, Dielectric properties of polycrystalline ZnS. Semiconductors, 40(1), p. 33-35 (2006).
https://doi.org/10.1134/S1063782606010040
 
14. A.F. Shchurov, V.A. Perevoshchikov, T.A. Grachev, N.D. Malygin, D.N. Shevarenkov, E.M. Gavrish-chuk, V.B. Ikonnikov, E.V. Yashin, Structure and mechanical properties of polycrystalline zinc sulfide. Inorganic materials, 40(2), p. 96-101 (2004).
https://doi.org/10.1023/B:INMA.0000016080.73558.c8
 
15. L.M. Kovba, V.K. Trunov, X-ray Phase Analysis. Moscow University Publishing House, 1976 (in Russian).
 
16. N.K. Morozova, I.A. Karetnikov, V.V. Blinov and E.M. Gavrishchuk, A study of luminescence centers related to copper and oxygen in ZnSe. Semiconductors, 35(1), p. 24-32 (2001).
https://doi.org/10.1134/1.1340285
 
17. N.K. Morozova, D.A. Mideros, V.G. Galstyan and E.M. Gavrishchuk, Specific features of luminescence spectra of ZnS:O and ZnS:Cu(O) crystals in the context of the theory of non-intersecting bands. Semiconductors, 42(9), p. 1023-1029 (2008).
https://doi.org/10.1134/S1063782608090042
 
18. N.K. Morozova, D.A. Mideros, E.M. Gavrishchuk and V.G. Galstyan, Role of background O and Cu impurities in the optics of ZnSe crystals in the context of the model of non-intersecting bands. Semiconductors, 42(2), p. 131-136 (2008).
https://doi.org/10.1134/S1063782608020024
 
19. N.K. Morozova, D.A. Mideros and N.D. Danilevich, Absorption, luminescence excitation, and infrared transmittance spectra of ZnS(O)-ZnSe(O) crystals in the context of the model of non-intersecting bands. Semiconductors, 43(2), p. 162-167 (2009).
https://doi.org/10.1134/S1063782609020080
 
20. N.K. Morozova, I.A. Karetnikov, V.G. Plotnichenko, E.M. Gavrishchuk, G.V. Yashina and V.B. Ikonnikov, Transformation of luminescence centers in CVD ZnS films subjected to a high hydrostatic pressure. Semiconductors, 38(1), p. 36-41 (2004).
https://doi.org/10.1134/1.1641130
 
21. S.V. Bulyarskii and A.S. Basaev, Thermodynamics and kinetics of adsorption of atoms and molecules by carbon nanotubes. Journal of Experimental and Theoretical Physics, 108(4), p. 688-698 (2009).
https://doi.org/10.1134/S1063776109040165
 
22. V.B. Fedoseyev, Excess free energy of solution during sedimentation of particles of a solved component. The bulletin of the N.I. Lobachevsky Nizhniy Novgorod University, 1(3), p. 94 (2001), in Russian.
 
23. N.J. Sdobniakov, On stability conditions of small particles in the condensed phase. The bulletin of Tver State University. Phys. Ser. 4(6), p. 158 (2004), in Russian.
 
24. B.G. Novitskiy, Application of Acoustic Vibrations in Chemical-and-technological Processes (Processes and Devices of Chemical and Petrochemical Technology). Chemistry, Moscow, 1983 (in Russian).
 
25. Yu.K. Kovneristy, I.Yu. Lazareva and F.F. Ravayev, Materials Absorbing Microwave Radiation. Nauka, Moscow, 1982 (in Russian).
 
26. A.S. Lagutin, V.I. Ozhogin, Pulsed Magnetic Fields in Physical Experiments. Energoatomizdat, Moscow, 1988 (in Russian).
 
27. N.D. Borisenko, M.F. Bulanyi, F.F. Kodzhespirov, B.A. Polezhaev, Properties of emission centers in manganese-doped zinc sulfide. Journal of Applied Spectroscopy, 55(3), p. 905-910 (1991).
https://doi.org/10.1007/BF00662420
 
28. M.F. Bulanyi, B.A. Polezhaev, T.A. Prokofiev, I.M. Chernenko, Excitation spectra and structure of luminescence centers of manganese ions in single crystals of zinc sulfide. Journal of Applied Spectroscopy, 67(2), pp. 282-286 (2000).
https://doi.org/10.1007/BF02681847
 
29. W. Busse, H. Gumlish, R.O. Tornqvist, V. Tanninen, Angular overlap model for the Jahn-Teller coupling constants in the orbital triplet states of d5 ions: Case of Mn2+ in ZnS and ZnSe. Phys. Status Solidi (a), 76, p. 553 (1983).
https://doi.org/10.1002/pssa.2210760218
 
30. W. Busse, H.-E. Gumlich, A. Geoffroy, R. Parrot, Spectral distribution and decay times of the luminescence of Mn2+ in different lattice sites in ZnS. Phys. Status Solidi (b), 93, p. 591-596 (1979).
https://doi.org/10.1002/pssb.2220930217
 
31. T.V. Butkhuzi, A.N. Georgobiani, Ye. Zada-Uly, B.T. Eltazarov, T.G. Khulordava, Luminescence in single-crystal layers of zinc oxide with n- and p-type conductivity. Trudy FIAN. 182, p. 140-187 (1987), in Russian.
 
32. V.F. Tunitskaya, T.F. Filina, E.I. Panasiuk, Z.P. Ilyukhina, The temperature properties of the individual blue bands of self-activated zinc sulfide and the nature of corresponding radiative centers. Journal of Applied Spectroscopy, 14(2), p. 182-186 (1971).
https://doi.org/10.1007/BF00613169
 
33. A.N. Georgobiani, M.K. Sheinkman, Physics of AIIBVI Compounds. Nauka, Moscow, 1986 (in Russian).
 
34. I.V. Ostrovsky, Acoustoluminescence and Defects in Crystals. Vyshcha shkola, Kiev, 1993 (in Russian).
 
35. V.F. Agekian, Intracenter transitions of iron-group ions in II-VI semiconductor matrices. Physics of the Solid State, 44(11), p. 2013-2030 (2002).
https://doi.org/10.1134/1.1521450
 
36. V.A. Goriunov, E.J. Zinchenko, V.S. Mordiuk, Computer simulation of influence of the density and nature of the dislocation distribution on the intensity of luminophor luminescence. Izvestiia vysshikh uchebnykh zavedenii. Povolzhskii region. Tekhnich. nauki. 1(13), p
https://doi.org/10.1134/1.1744954. 73 (2010), in Russian.
 
37. A.I. Olemskoi, I.A. Sklyar, Evolution of the defect structure of a solid during plastic deformation. Physics-Uspekhi, 35(6), p. 455-480 (1992).
https://doi.org/10.1070/PU1992v035n06ABEH002241
 
38. Yu.I. Golovin, Magnetoplastic effects in solids. Physics of the Solid State, 46(5), p. 789-824 (2004).
 
39. S.A. Omel'chenko, M.F. Bulanyi and O.V. Khmelenko, Effect of the electric fields of immobile dislocations on photoluminescence and EPR in deformed ZnS crystals. Physics of the Solid State, 45(9), p. 1688-1693 (2003).
https://doi.org/10.1134/1.1611235