Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 3. P. 289-292.
References 1. V.N. Danilin, Yu.P. Dokuchaev, T.A. Zhukova M.A. Komarov, Power high-temperature-capable and radiation-resistant new-generation microwave devices with wide-gap heterojunction AlGaN/GaN structures. Obzory po Elektronnoi Tekhnike, Ser. 1. SVCh Tekhnika, GUPNPP "Pulsar", Moscow (2001), (in Russian).2. T.V. Blank, Yu.A. Gol'dberg, Semiconductor photoelectric converters for the ultraviolet region of the spectrum. Semiconductors 37(9), p. 999-1030 (2003). https://doi.org/10.1134/1.1610111 3. E.F. Schubert, Light-Emitting Diodes, 2nd Ed. Cambridge Univ. Press, 2006. https://doi.org/10.1017/CBO9780511790546 4. R. Quay, Gallium Nitride Electronics. Springer-Verlag, Berlin–Heidelberg, 2008. 5. A.G. Vasil'ev, Yu.V. Kolkovskii, Yu.A. Kontsevoi, Microwave Wide-Gap Semiconductor Devices and Facilities. Teknosfera, Moscow, 2011 (in Russian). 6. A.N. Kovalev, Semiconductor Heterostructure Transistors. DomMISiS, Moscow, 2011 (in Russian). 7. T.V. Blank, Yu.A. Gol'dberg, O.V. Konstantinov, V.G. Nikitin, E.A. Posse, The mechanism of current flow in an alloyed In-GaN ohmic contact. Semiconductors 40(10), p. 1173-1177 (2006). https://doi.org/10.1134/S1063782606100095 8. T. Erlbacher, M. Bickermann, B. Kallinger, E. Meissner, A.J. Bauer, L. Frey, Ohmic and rectifying contacts on bulk AlN for radiation detector applications. Phys. Stat. Sol.(c), 9(3-4), p. 968-971 (2012). https://doi.org/10.1002/pssc.201100341 9. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, Yu.V. Zhilyaev, V.P. Klad'ko, R.V. Konakova, Ya.Ya. Kudryk, V.N. Panteleev, V.N. Sheremet, Resistance formation mechanisms for contacts to n-GaN and n-AlN with high dislocation density. Phys. Stat. Sol.(c), 10(3), p. 498-500 (2013). https://doi.org/10.1002/pssc.201200530 10. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, Yu.V. Zhilyaev, L.M. Kapitanchuk, V.P. Klad'ko, R.V. Konakova, Ya.Ya. Kudryk, A.V. Naumov, V.N. Panteleev, V.N. Sheremet, Formation mechanism of contact resistance to III-N heterostructures with a high dislocation density. Semiconductors 47(9), p. 1180-1184 (2013). https://doi.org/10.1134/S1063782613090212 11. D.K. Schroder, Semiconductor Materials and Device Characterization. Wiley, New Jersey, 2006. 12. V.N. Bessolov, Yu.V. Zhilyaev, E.V. Konenkova, V.N. Panteleev, I.K. Poletaev, S.N. Rodin, Sh. Sharofidinov, M.P. Scheglov, S.A. Kukushkin, Vapor-phase epitaxy of semipolar GaN/AlN/Si(100) and nonpolar AlN/3C-SiC/Si(100) structures. Abstracts of Reports at the 8th All-Russian Conf. "Gallium, Indium and Aluminum Nitrides – Structures and Devices", Sankt-Peterburg, May 26-28, 2011, p. 200 (in Russian). 13. A.E. Belyaev, N.S. Boltovets, S.A. Vitusevich, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudryk, A.A. Lebedev, V.V. Milenin, Yu.N. Sveshnikov, V.N. Sheremet, Effect of microwave treatment on current flow mechanisms in Au-TiBx-Al-Ti-n+-n-n+-GaN-Al2O3 ohmic contacts. Semiconductors 44(6), p. 745-751 (2010). https://doi.org/10.1134/S1063782610060102 14. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, R.V. Konakova, Ya.Ya. Kudryk, S.V. Novitskii, V.N. Sheremet, J. Li, S.A. Vitusevich, Mechanism of contact resistance formation in ohmic contacts with high dislocation density. J. Appl. Phys. 111, 083701 (2012). https://doi.org/10.1063/1.3702850 15. M.G. Milvidskii, V.B. Osvenskii, Structural Defects in the Epitaxial Layers of Semiconductors. Metallurgiya, Moscow, 1985 (in Russian). |