Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N
3. P. 268-271.
References 1. 1. K.L. Chopra, S.R. Das, Thin Film Solar Cells. Plenum Press, New York, 1983.https://doi.org/10.1007/978-1-4899-0418-8 2. T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Solar photovoltaic electricity: Current status and future prospects . Solar Energy, 85(8), p. 1580-1608 (2011). https://doi.org/10.1016/j.solener.2010.12.002 3. M. Hage-Ali and P. Siffert, Semiconductors for room temperature nuclear detector application . Semiconductor and Semimetals, Vol. 43, Eds. T.E. Schlesinger, and R.B. James. Academic Press, San Diego (1995). 4. K.D. Dobson, I. Visoly-Fisher, G. Hodes and D. Cahen, Stability of CdTe/CdS thin-film solar cells . Solar Energy Materials and Solar Cells, 62(3), p. 295-325 (2000). https://doi.org/10.1016/S0927-0248(00)00014-3 5. T.L. Chu, S.S. Chu, Thin film II-VI photovoltaics . Solid-State Electron., 38(3), p. 533-549 (1995). https://doi.org/10.1016/0038-1101(94)00203-R 6. T.A. Gessert, S. Asher, S. Johnston, M. Young, P. Dippo, C. Corwine, Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti contact . Thin Solid Films, 515(15), p. 6103-6106 (2007). https://doi.org/10.1016/j.tsf.2006.12.107 7. X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells . Solar Energy, 77, p. 803-814 (2004). https://doi.org/10.1016/j.solener.2004.06.006 8. B. Ghosh, S. Purakayastha, P.K. Datta, R.W. Miles, M.J. Carter, R. Hill, Formation of a stable ohmic contact to CdTe thin films through the diffusion of P from Ni-P . Semicond. Sci. Tech., 10(1), p. 71-76 (1995). https://doi.org/10.1088/0268-1242/10/1/012 9. N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, A highly efficient and stable CdTe/CdS thin film solar cell . Solar Energy Mat. Solar Cells, 58, p. 209-218 (1999). https://doi.org/10.1016/S0927-0248(98)00204-9 10. D.L. Botzner, A. Romeo, M. Terheggen, M. Dobeli, H. Zogg, A.N. Tiwari, Stability aspects in CdTeyCdS solar cells . Thin Solid Films, 451-452, p. 536-543 (2004). https://doi.org/10.1016/j.tsf.2003.10.141 11. W. Walukiewicz, Mechanism of Fermi-level stabilization in semiconductors . Phys. Rev. B, 37, p. 4760-4763 (1988). https://doi.org/10.1103/PhysRevB.37.4760 12. R. Leitsmann, L.E. Ramos and F. Bechstedt, Structural properties of PbTe/CdTe interfaces from first principles . 13. R. Leitsmann and F. Bechstedt, Electronic-structure calculations for polar lattice-structure-mismatched interfaces 14. M. Bukala, P. Sankowski, R. Buczko and P. Kacman, Crystal and electronic structure of PbTe/CdTe nanostructures . Nanoscale Res. Lett. 6, p. 126 (2011). https://doi.org/10.1186/1556-276X-6-126 15. J. Si, S. Jin, H. Zhang, P. Zhu, D. Qiu, H. Wu, Experimental determination of valence band offset at PbTe/CdTe(111) 16. C.F. Cai, H.Z. Wu, J.X. Si, S.Q. Jin, W.H. Zhang, Y Xu, Energy band alignment of PbTe/CdTe(111) interface determined 17. V.V. Tetyorkin, A.V. Sukach, A.I. Tkachuk, S.P. Movchan, Injection current and infrared photosensitivity in iso-type p-PbTe/p-CdTe heterojunctions . Semiconductor Physics, Quantum Electronics and Optoelectronics, 16(1), p. 57-61 (2013). 18. G. Nimitz, B. Schlicht, Narrow-gap lead salts, in: Narrow-Gap Semiconductors. Springer, Berlin, 1985. 19. H. Abrams, Grain size measurement by the intercept method . Metallography, 4(1), p. 5978 (1971). https://doi.org/10.1016/0026-0800(71)90005-X 20. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors. Springer, Berlin, 1984. https://doi.org/10.1007/978-3-662-02403-4 |