Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 3. P. 284-290.
https://doi.org/10.15407/spqeo17.03.284


                                                                 

References

1. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency . Adv. Energy Materials, 4(7), p. 1-5 (2014).
https://doi.org/10.1002/aenm.201301465
 
2. P. Bruzzoni, R.M. Carranza, J.R. Collet Lacoste, E.A. Crespo, Kramers-Kronig transforms calculation with a fast convolution algorithm . Electrochimica Acta, 48, p. 341-347 (2002).
https://doi.org/10.1016/S0013-4686(02)00677-1
 
3. M. Espindola-Rodriguez, M. Placidi, O. Vigil-Galan, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, D. Sylla, E. Saucedo, A. Perez-Rodriguez, Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis . Thin Solid Films, 535, p. 67-72 (2013).
https://doi.org/10.1016/j.tsf.2012.12.082
 
4. V.A. Rabinovich, Z.Ya. Havich, Concise Chemical Directory. Chemistry, Leningrad, 1991.
 
5. S. Schorr, The crystal structure of kesterite type compounds: a neutron and x-ray diffraction study . Solar Energy Materials and Solar Cells, 95, p. 1482-1488 (2011).
https://doi.org/10.1016/j.solmat.2011.01.002
 
6. I.D. Olekseyuk, E.V. Dudchak, L.V. Piskach, Phase equilibria in the Cu2S-ZnS-SnS2 system . J. Alloys and Compounds, 368, p. 135-143 (2004).
https://doi.org/10.1016/j.jallcom.2003.08.084
 
7. A. Fairbrother, X. Fontane, V. Izquierdo-Roca, M. Espindola-Rodriguez, S. Lopez-Marino, M. Placidi, L. Calvo-Barrio, A. Perez-Rodriguez, E. Saucedo, On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks . Solar Energy Materials & Solar Cells, 112, p. 97-105 (2013).
https://doi.org/10.1016/j.solmat.2013.01.015
 
8. A.J. Jackson, A. Walsh, Ab initio thermodynamic model of Cu2ZnSnS4 . J. Mater. Chem. A, 2, p. 7829-7836 (2014).
https://doi.org/10.1039/C4TA00892H
 
9. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films . Thin Solid Films, 517, p. 2519-2523 (2009).
https://doi.org/10.1016/j.tsf.2008.11.031
 
10. I.S. Babichuk, V.O. Yukhymchuk, V.M. Dzhagan, M.Ya. Valakh, M. Leon, I.B. Yanchuk, E.G. Gule, O.M. Greshchuk, Thin films of Cu2ZnSnS4 for solar cells: optical and structural properties . Functional Materials, 20(2), p. 186-191 (2013).
https://doi.org/10.15407/fm20.02.186
 
11. X. Fontane, V. Izquierdo-Rosa, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Ya. Valakh, A. Perez-Rodriguez, J.R. Morante, Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4 . J. Alloys and Compounds, p. 190-194 (2012).
https://doi.org/10.1016/j.jallcom.2012.06.042
 
12. A. Khare, B. Himmetoglu, M. Johnson, D.J. Norris, M. Cococcioni, E.S. Aydil, Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments . J. Appl. Phys. 111(8), 083707-083716 (2012).
https://doi.org/10.1063/1.4704191
 
13. R. Caballero, E. Garcia-Llamas, J.M. Merino, M. Leon, I. Babichuk, V. Dzhagan, V. Strelchuk, M. Valakh, Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation . Acta Materialia, 65 p. 412-417 (2014).
https://doi.org/10.1016/j.actamat.2013.11.010
 
14. M.Ya. Valakh, O.F. Kolomys, S.S. Ponomaryov, V.O. Yukhymchuk, I.S. Babichuk, V. Izquierdo-Rosa, E. Saucedo, A. Perez-Rodriguez, J.R. Morante, S. Shorr, I.V. Bodnar, Raman scattering and disordering effect in Cu2ZnSnS4 . Phys. Status Solidi (RRL) - Rapid Research Letters, 7(4), p. 258-261 (2013).
 
15. P. Schutz, A.K. Alves, C.P. Bergmann, Effect of the in-air heat treatment in the phase formation and morphology of electrospun Cu2ZnSnS4 fibers. Ceramics Intern. 40(8), p. 11551-11557 (2014).
https://doi.org/10.1016/j.ceramint.2014.03.103
 
16. S. Chen, X.G. Gong, Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds . Phys. Rev. B, 79, p. 165211-165221 (2009).
https://doi.org/10.1103/PhysRevB.79.165211
 
17. M. Cardona, D.L. Greenaway, Optical properties and band structure of group IV-VI and group V materials . Phys. Rev. 133(6A), p. A1685-A1697 (1964).
https://doi.org/10.1103/PhysRev.133.A1685
 
18. M. Ikhlasul Amal, Kyoo Ho Kim, Structural and optical properties of sulfurized Cu2ZnSnS4 thin films from Cu-Zn-Sn alloy precursors . J. Mater. Sci.: Materials in Electronics, 24(2), p. 559-566 (2013).
https://doi.org/10.1007/s10854-012-0858-7
 
19. R.B.V. Chalapathy, G.S. Jung, B.T. Ahn, Fabri-cation of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells . Solar Energy Materials and Solar Cells, 95(12), p. 3216-3221 (2011).
https://doi.org/10.1016/j.solmat.2011.07.017
 
20. P.K. Sarswat, M.L. Free, A study of energy band gap versus temperature for Cu2ZnSnS4 thin films . Phys. B: Condens. Matter, 407(1), p. 108-111 (2012).
https://doi.org/10.1016/j.physb.2011.09.134
 
21. J.P. Leitao, N.M. Santos, P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J.C. Gonzalez, G.M. Ribeiro, F.M. Matinaga, Photoluminescence and electrical study of fluctuating potentials in Cu2ZnSnS4-based thin films . Phys. Rev. B, 84, 024120 - 024128 (2011).
https://doi.org/10.1103/PhysRevB.84.024120
 
22. A.U. Sheleg, V.G. Hurtavy, A.V. Mudryi, M.Ya. Valakh, V.O. Yukhymchuk, I.S. Babichuk, M. Leon, R. Caballero, Study of structural and optical properties of Cu2ZnSnS4 semiconductor compounds thin films . Semiconductors, 48(10), p. 1332-1338 (2014).
https://doi.org/10.1134/S1063782614100273
 
23. M. Grossberg, J. Krustok, J. Raudoja, T. Raadik, The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy . Appl. Phys. Lett. 101, 102102 - 102106 (2012).
https://doi.org/10.1063/1.4750249