Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 248-254.
DOI: https://doi.org/10.15407/spqeo18.03.248


References

1. Yu. M. Vysochanskii, V.Yu. Slivka, Lifshitz point on the state diagram of ferroelectrics. Sov. Phys. Uspekhi, 35, p. 123-134 (1992). https://doi.org/10.1070/PU1992v035n02ABEH002217

2. J. Hlinka, T. Janssen, V. Dvořák, Order–disorder versus soft mode behaviour of the ferroelectric phase transition in Sn2P2S6. J. Phys.: Condens. Matter, 11, p. 3209-3216 (1999). https://doi.org/10.1088/0953-8984/11/16/002

3. M.B. Smirnov, J. Hlinka, A.V. Solov'ev, Lattice dynamics and the ferroelectric phase transition in Sn2P2S6. Phys. Rev. B, 61, p. 15051-15060 (2000). https://doi.org/10.1103/PhysRevB.61.15051

4. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, F. Ramaz, Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal. Opt. Lett. 35, p. 1798-1800 (2010). https://doi.org/10.1364/OL.35.001798

5. G. Dittmar, H. Schäfer, Die Struktur des Di-Zinn-Hexathiohypodiphosphats Sn2P2S6. Z. Naturforsch. B, 29, p. 312-317 (1974).

6. M.M. Maior, Dielectric properties of Sn2P2S6 crystals depending on the conditions of their fabrication. Sov. Phys. Solid State, 41, p. 1333-1338 (1999). https://doi.org/10.1134/1.1130994

7. Yu.M. Vysochanskii, V.Yu. Slivka, Yu.V. Voro¬shilov, M.I. Gurzan, D.V. Chepur, Polarization spectra of Raman scattering for Sn2P2S6 ferrosemiconductor. Sov. Phys. Solid. State, 21, p. 123-127 (1979).

8. A.V. Gomonnai, Yu.M. Vysochanskii, A.A. Grabar, V.Yu. Slivka, Anisotropy of Raman scat¬tering spectra in Sn2P2S6. Sov. Phys. Solid. State, 23, p. 2105-2109 (1981).

9. J. Hlinka, I. Gregora, V. Vorliček, Complete spectrum of long-wavelength phonon modes in Sn2P2S6 by Raman scattering. Phys. Rev. B, 65, p. 064308-1–064308-9 (2002). https://doi.org/10.1103/PhysRevB.65.064308

10. S.W.H. Eijt, R. Currat, J.E. Lorenzo, P. Saint-Grégoire, B. Hennion, Yu.M. Vysochanskii, Soft modes and phonon interactions in Sn2P2S6 studied by inelastic neutron scattering. Eur. J. Phys. B, 5, p. 169-178 (1998). https://doi.org/10.1007/s100510050431

11. V. Samulionis, J. Banys, Yu. Vysochanskii, A. Grabar, The critical behavior of ultrasonic velocity at a second order phase transition in Sn2P2S6 single crystals. Phys. Status Solidi B, 215, p. 1151-1156 (1999). https://doi.org/10.1002/(SICI)1521-3951(199910)215:2<1151::AID-PSSB1151>3.0.CO;2-F

12. I.P. Studenyak, V.V. Mitrovcij, Gy.Sh. Kovacs, O.A. Mykajlo, M.I. Gurzan, Yu.M. Vysochanskii, Temperature variation of optical absorption edge in Sn2P2S6 and Sn2P2Se6 crystals. Ferroelectrics, 254, p. 295-310 (2001). https://doi.org/10.1080/00150190108215009

13. Yu.M. Vysochanskii, V.V. Mitrovcij, A.A. Grabar, S.I. Perechinskii, S.F. Motrja, J. Kroupa, Birefringence investigation of the Sn2P2(SexS1-x)6 uniaxial ferroelectrics behaviour near the Lifshitz point. Ferroelectrics, 237, p. 193-200 (2000). https://doi.org/10.1080/00150190008216249

14. D. Baltrunas, A.A. Grabar, K. Mazeika, Yu.M. Vysochanskii, Temperature investigations of ferroelectric crystals Sn2P2S6 and Sn2P2Se6 by means of 119Sn Mossbauer spectroscopy. J. Phys.: Condens. Matter, 11, p. 2983-2993 (1999). https://doi.org/10.1088/0953-8984/11/14/014

15. Yu.M. Vysochanskii, D. Baltrunas, A.A. Grabar, K. Mazeika, K. Fedyo, A. Sudavicius, Mössbauer 119Sn and XPS spectroscopy of Sn2P2S6 and SnP2S6 crystals. phys. status solidi (b), 246, p. 1110-1115 (2009).

16. K. Kuepper, B. Schneider, V. Caciuc, M. Neu¬mann, A.V. Postnikov, A. Ruediger, A.A. Grabar, Yu.M. Vysochanskii, Electronic structure of Sn2P2S6. Phys. Rev. B, 67, p. 115101-1–115101-7 (2003). https://doi.org/10.1103/PhysRevB.67.115101

17. J. Grigas, E. Talik, V. Lazauskas, Yu.M. Vyso¬chanskii, R.Yevych, M. Adamiec, V. Nelkinas, XPS of electronic structure of ferroelectric Sn2P2S6 crystals. Ferroelectrics, 378, p. 70-78 (2009). https://doi.org/10.1080/00150190902845145

18. A. Say, O. Mys, A.A. Grabar, Yu.M. Vysochanskii, R.O. Vlokh, Thermal expansion of Sn2P2S6. Phase Transitions, 82, p. 531-540 (2009). https://doi.org/10.1080/01411590903079003

19. Y.W. Cho, S.K. Choi, Yu. M. Vysochanskii, Photovoltaic effect of Sn2P2S6 crystal and ceramics. J. Mater. Res., 16, p. 3317-3322 (2001). https://doi.org/10.1557/JMR.2001.0456

20. X. Bourdon, E. Prouzet, V.B. Cajipe, Room-temperature synthesis of Sn2P2S6. J. Sol.-State Chem. 129, p. 157-159 (1997). https://doi.org/10.1006/jssc.1996.7244

21. X. Bourdon, V.B. Cajipe, Soft-chemistry forms of Sn2P2S6 and CuInP2S6. J. Sol.-State Chem. 141, p. 290-293 (1998). https://doi.org/10.1006/jssc.1998.7919

22. A.V.Gomonnai, Yu.M.Azhniuk, Yu.M.Vysochan¬skii, A.A. Kikineshi, M. Kis-Varga, L. Daroczy, I.P. Prits, I.M. Voynarovych, Raman and X-ray diffraction studies of nanometric Sn2P2S6 crystals. J. Phys.: Condens. Matter, 15, p. 6381-6393 (2003). https://doi.org/10.1088/0953-8984/15/37/006

23. M. Gasqnier, H. Szwarc, A. Petit, Synthesis of ditin hexathiophosphate Sn2P2S6 by low-energy ball-milling and monomode microwave. Mater. Res. Bull. 38, p. 1681- 1694 (2003). https://doi.org/10.1016/j.materresbull.2003.07.004

24. U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer, Berlin/Heidelberg, 1997.

25. Yu.M. Azhniuk, V.V. Lopushansky, A.V. Go¬monnai, V.O. Yukhymchuk, I.I. Turok, Ya.I. Studenyak, Spectroscopic studies of thermal treatment effect on the composition and size of CdS1–xSex nanocrystals in borosilicate glass. J. Phys. Chem. Sol. 69, p. 139-146 (2008). https://doi.org/10.1016/j.jpcs.2007.08.009

26. Yu.M. Azhniuk, P. Bhandiwad, V.M. Rubish, P.P. Guranich, O.G. Guranich, A.V. Gomonnai, D.R.T. Zahn, Photoinduced changes in the structure of As2S3-based SbSI nanocrystal-containing composites studied by Raman spectroscopy. Ferroelectrics, 416, p. 113-118 (2011). https://doi.org/10.1080/00150193.2011.577718

27. Yu.M. Azhniuk, V. Stoyka, I. Petryshynets, V.M. Rubish, O.G. Guranich, A.V. Gomonnai, D.R.T. Zahn, SbSI nanocrystal formation in As–Sb–S–I glass under laser beam. Mater. Res. Bull. 47, p. 1520-1522 (2012). https://doi.org/10.1016/j.materresbull.2012.02.036

28. G. Lucovsky, Optic modes in amorphous As2S3 and As2Se3. Phys. Rev. B, 6, p. 1480-1489 (1972). https://doi.org/10.1103/PhysRevB.6.1480

29. H. Kawamura, K. Fukumasu, Y. Hamada, Low-frequency inelastic light scattering from As–S glasses. Solid State Communs. 43, p. 229-231 (1982). https://doi.org/10.1016/0038-1098(82)90118-1

30. T. Mori, K. Matsuishi, T. Arai, Vibrational pro¬perties and network topology of amorphous As–S systems. J. Non-Cryst. Solids, 65, p. 269-283 (1984). https://doi.org/10.1016/0022-3093(84)90052-8

31. S. Mamedov, A. Bolotov, L. Brinker, A. Kisliuk, M. Soltwisch, M. Vlček, A. Sklenar, X-ray small-angle and Raman scattering from glasses in the As2S3–CuI system. Phys. Rev. B, 58, p. 8155-8158 (1998). https://doi.org/10.1103/PhysRevB.58.8155

32. M. Frumar, Z. Polák, Z. Černošek, Raman spectra and photostructural changes in the short-range order of amorphous As–S chalcogenides. J. Non-Cryst. Solids, 256– 257, p. 105-110 (1999). https://doi.org/10.1016/S0022-3093(99)00454-8

33. M.S. Iovu, S.D. Shutov, A.M. Andriesh et al., Spectroscopic study of As2S3 glasses doped with Dy, Sm and Mn. J. Non-Cryst. Solids, 326–327, p. 306-310 (2003). https://doi.org/10.1016/S0022-3093(03)00418-6

34. N.V. Surovtsev, A.M. Pugachev, B.G. Nenashev, V.K. Malinovsky, Low-frequency Raman scattering in As2S3 glass former around the liquid–glass transition. J. Phys.: Condens. Matter, 15, p. 7651-7662 (2003). https://doi.org/10.1088/0953-8984/15/45/004

35. I. Ivan, M. Veres, I. Pócsik, S. Kokenyesi, Structural and optical changes in As2S3 thin films induced by light ion irradiation. phys. status solidi (a), 201, p. 3193-3199 (2004).

36. K.S. Andrikopoulos, D. Christofilos, G.A. Kourouklis, and S.N. Yannopoulos, Pressure dependence of the Boson peak in glassy As2S3 studied by Raman Scattering. J. Non-Cryst. Solids, 352, p. 4594-4600 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.056

37. V.K. Tikhomirov, M. Barj, S. Turrell et al., Non-linear Raman effects and photodarkening in chal¬cogenide glass As2S3. Europhys. Lett. 76, p. 312-317 (2006). https://doi.org/10.1209/epl/i2006-10272-8

38. L. Koudelka, M. Pisárčik, L.N. Blinov, M.S. Gu¬tenev, Vibrational spectra and structure of As–P–S glasses. J. Non-Cryst. Solids, 134, p. 86-93 (1991). https://doi.org/10.1016/0022-3093(91)90014-W

39. V.V. Shchennikov, N.V. Morozova, I. Tyagur, Yu. Tyagur, S.V. Ovsyannikov, Colossal tuning of an energy gap in Sn2P2S6 under pressure. Appl. Phys. Lett. 99, p. 212104-1–212104-3 (2011). https://doi.org/10.1063/1.3662926

40. Yu.M. Azhniuk, A.V. Gomonnai, V.M Rubish, M.Yu. Rigan, O.O. Gomonnai, O.G. Guranich, D.R.T. Zahn, In situ Raman observation of laser-induced formation of TlInSe2 crystallites in Tl–In–As–Se glass. J. Phys. Chem. Solids, 74, p. 1452-1458 (2013). https://doi.org/10.1016/j.jpcs.2013.05.005

41. D.D. Georgiev, P. Boolchand, K.A. Jackson, Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil. Mag. 83, p. 2941-2953 (2003). https://doi.org/10.1080/1478643031000151196