Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 267-271.
DOI: https://doi.org/10.15407/spqeo18.03.267


References

1. A. Rogalskii (Ed.), Infrared Photon Detectors. SPIE Optical Eng. Press, 1995.

2. P.V. Birulin, V.I. Turinov, E.B. Yakimov, Characteristics of InSb photodiode linear arrays. Semiconductors, 38(4), p. 488-503 (2004).

3. A.M. Filachev, I.D. Burlakov, A.I. Dirochka et al., Fast-operating array photodetective assembly of a 128×128 elements format on the basis of InSb with the frame-accurate accumulation and function of the range finder. Prikladnaya Fizika, No.2, p. 21-25 (2005), in Russian.

4. A. Rogalski, Optical detectors for focal plane arrays. Opto-Electron. Rev. 12(2), p. 221-245 (2004).

5. E. Hurwitz, I.P. Donnely, Planar InSb photodiodes fabricated by Be and Mg implantation. Solid State Electron. 18 (9), p. 753-756 (1975). https://doi.org/10.1016/0038-1101(75)90152-5

6. V.P. Astahov, D.A. Gindin, V.V. Karpov et al., Developments in InSb-photodetectors with very-low-level dark current for use in high performance IR CCDs. Prikladnaya Fizika, No.2, p. 73-79 (1999), in Russian.

7. V.P. Astahov, D.A. Gindin, V.V. Karpov, A.V. Ta-limov, On the possibility of increasing the current sensitivity in InSb-based photodiodes. Priklad-naya Fizika, No.1, p. 56-62 (2002), in Russian.

8. A. Sukach, V. Tetyorkin, A. Voroschenko, A. Tka-chuk et al., Carrier transport mechanisms in InSb diffusion p-n functions. Semiconductor Physics, Quantum Electronics and Optoelectronics, 17(4), p. 325-330 (2014). https://doi.org/10.15407/spqeo17.04.325

9. R.D. Thom, T.L. Hoch, I.D. Langan et al., A fully monolithic InSb infrared CCD array. IEEE Trans. Electron. Dev., ED-27, p.160-170 (1980). https://doi.org/10.1109/T-ED.1980.19835

10. R. Adar, V. Nemirovsky and I. Kidron, Bulk tunneling contribution to the reverse breakdown characteristics of InSb gate controlled diodes. Solid State Electron. 30(12), p.1289-1293 (1987). https://doi.org/10.1016/0038-1101(87)90054-2

11. S.L. Tu, K.F. Huang, InSb p-n function with avalanche breakdown behavior. Jpn. J. Appl. Phys. 28(11), p. L1874-L1876 (1989). https://doi.org/10.1143/JJAP.28.L1874

12. H.A. Protschka, D.C. Shang, InSb photodiodes, with high reverse breakdown voltage. International Electron Devices Meeting, 13, p. 56 (1967). https://doi.org/10.1109/iedm.1967.187818

13. J. Abautret, J.P. Perez, A. Evirgen et al., Electrical modeling of InSb PiN photodiode for avalanche operation. J. Appl. Phys. 113, p. 183716 (2013). https://doi.org/10.1063/1.4804956

14. F. Dewald, The kinetics and mechanism of formation of anode films on single crystal InSb. J. Electrochem. Soc. 104(4), p. 244-251 (1957). https://doi.org/10.1149/1.2428546

15. M. Shroder, Semiconductor Materials and Device Characterization. Wiley, 2006.

16. Yu.F. Bikovskii, L.A. Vjukov, A.G. Dudoladov et al., Investigation of MIS film structures based on CdTe-InSb. Pisma Zhurnal Tekhn. Fiziki, 9(17), p. 1071-1074 (1983), in Russian.

17 S.M. Sze, Physics of Semiconductors Devices. Second Edition, Wiley, 1981.

18. H.H. Smirnova, S.V. Slobodchikov, G.N. Talalakin, Reverse current and breakdown mechanisms in InAs. Fizika Tekhnika Poluprovod. 16(12), p. 2116-2120 (1982), in Russian.

19. O.S. Shemelina, Yu.F. Novototskii-Vlasov, Equilibrium parameters of deep bulk levels in indium antimonide. Fizika Tekhnika Poluprovod. 26(6), p. 1015-1023 (1992), in Russian.

20. V. Ravi, Imperfections and Impurities in Semicon-ductor Silicon. Wiley, 1981.

21. A.Ya. Vul', V.N. Koryayev, P.G. Petrosyan et al., p-n junctions in GaAs-GaSb solid solutions. Fizika Tekhnika Poluprovod. 16(10), p. 1838-1842 (1982), in Russian.

22. A.Ya. Vul', T.A. Polanskaya, I.G Savelyev et al., On the mechanism of breakdown of p-n junctions based on GaAs1−xSbx solid solutions. Fizika Tekhnika Poluprovod. 17(1), p. 134-138 (1983).

23. M.E. Raikh, I.M. Ruzin, Fluctuation mechanism of excess tunneling current in reverse-biased p-n junctions. Fizika Tekhnika Poluprovod. 19(7), p. 1217-1225 (1985), in Russian.

24. W.W. Anderson and H.J. Hoffman, Field ionization of deep levels in semiconductors with application to Hg1−xCdxTe p-n junctions. J. Appl. Phys. 53(12), p. 9130-9145 (1982). https://doi.org/10.1063/1.330425

25. Y. Nemirovsky, A. Unikovsky, Tunneling and 1/f noise currents in HgCdTe photodiodes. J. Vac. Sci. Technol. B, 10(4), p. 1602-1610 (1992). https://doi.org/10.1116/1.586256

26. V. Tetyorkin, A. Sukach and A. Tkachuk, InAs infrared photodiodes, In: Advances in Photodiode. Ed. G.-F. Dalla Betta, InTech, p. 427-446(2011). https://doi.org/10.5772/14084

27. He Wenmu, Celik-Batler Zeynep, 1/f noise and dark current in HgCdTe components in HgCdTe MIS infrared detectors. Solid State Electron. 19(1), p. 127-132 (1996). https://doi.org/10.1016/0038-1101(95)00089-C

28. G.J. Nott, P.C. Findlay, J.G. Crowder et al., Direct determination of Shockley-Read-Hall trap density in InSb/InAlSb detectors. J. Phys. Condens. Matter, 12, p. L731-L734 (2000). https://doi.org/10.1088/0953-8984/12/50/101