Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 286-291.
DOI: https://doi.org/10.15407/spqeo18.03.286


References

1. E. Marla, T. Malave-Sanabria, P. Hambrouger et al., Transparent Conducting Thin Films for Spacecraft Applications. NASA Technical Report Server (NTRS), 1994.
 
2. A. Jasenek, U. Rau, Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation. J. Appl. Phys. 90(2), p. 650-658 (2001).
https://doi.org/10.1063/1.1379348

 3. C. Ohler, A. Förster, J. Moers, C. Daniels, H. Lüth, Band offsets at heavily strained III-V interfaces. J. Phys. D. Appl. Phys. 30(10), p. 1436-1441 (1999).
https://doi.org/10.1088/0022-3727/30/10/008

 4. K. Ellmer, R. Cebulla, R. Wendt, Polycrystalline ZnO- and ZnO:Al-layers: Dependence of film stress and electrical properties on the energy input during the magnetron sputtering deposition. MRS Proc. 472, p. 245 (1997).    
 
5. D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L. Jones, J.R. Sizelove, Production and annealing of electron irradiation damage in ZnO. Appl. Phys. Lett. 75(6), p. 811 (1999).
https://doi.org/10.1063/1.124521
 
6. D. Look, J. Hemsky, J. Sizelove, Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, p. 2552-2555 (1999).
https://doi.org/10.1103/PhysRevLett.82.2552

 7. C. Coskun, D.C. Look, G.C. Farlow, J.R. Sizelove, Radiation hardness of ZnO at low temperatures. Semicond. Sci. Technol. 19, p. 752-754 (2004).
https://doi.org/10.1088/0268-1242/19/6/016

 8. F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. van Laarhoven, D.C. Look, Electrical characterization of 1.8 MeV proton-bombarded ZnO. Appl. Phys. Lett. 79(19), p. 3074-3076 (2001).
https://doi.org/10.1063/1.1415050
 
9. F. Tuomisto, K. Saarinen, D.C. Look, Irradiation-induced defects in ZnO studied by positron annihilation spectroscopy. physica status solidi (a), 201(10), p. 2219-2224 (2004).    
 
10. E. Gür, H. Asıl, C. Coşkun et al., Optical and structural properties of ZnO thin films; effects of high energy electron irradiation and annealing. Nucl. Instr. and Meth. in Phys. Res. Sec. B, 266(9), p. 2021-2026 (2008).    
 
11. A. Ievtushenko, V. Karpyna, G. Lashkarev et al., Multilayered ZnO films of improved quality deposited by magnetron sputtering. Acta Physica Polonica, 114(5), p. 1131-1137 (2008).    
 
12. A.I. Ievtushenko, G.V. Lashkarev, V.I. Lazorenko, V.A. Karpyna, M.G. Dusheyko, V.M. Tkach, L.A. Kosyachenko, V.M. Sklyarchuk et al., Effect of nitrogen doping on photoresponsivity of ZnO films. physica status solidi (a), 207(7), p. 1746-1750 (2010).    
 
13. J.H. Jou, M.Y. Han, D.J. Cheng, Substrate dependent internal stress in sputtered zinc oxide thin films. J. Appl. Phys. 71, p. 4333-4336 (1992).
https://doi.org/10.1063/1.350815
 
14. R. Cebulla, R. Wendt, K. Ellmer, Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 83(2), p. 1087 (1998).
https://doi.org/10.1063/1.366798
 
15. J. Hinze, K. Elmer, In situ measurement of mechanical stress in polycrystalline zinc-oxide thin films prepared by magnetron sputtering. J. Appl. Phys. 88(5), p. 2443-2450 (2000).
https://doi.org/10.1063/1.1288162
 
16. I. Shtepliuk, G. Lashkarev, V. Khomyak et al., Features of the influence of the deposition power and Ar/O2 gas ratio on the microstructure and optical properties of the Zn0.9Cd0.1O films. Thin Solid Films, 520(14), p. 4772-4777 (2012).
https://doi.org/10.1016/j.tsf.2011.10.181
 
17. C.R. Aita, R.J. Lad, T.C. Tisone, Effect of rf power on reactively sputtered zinc oxide. J. Appl. Phys. 51(12), p. 6405-6410 (1980).
https://doi.org/10.1063/1.327585
 
18. B. Szyszka, Transparent and conductive aluminum doped zinc oxide prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films, 351, p. 164-169 (1999).
https://doi.org/10.1016/S0040-6090(99)00158-3
 
19. S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering. Surf. Coatings Technol. 98(1–3), p. 1304-1314 (1998).
https://doi.org/10.1016/S0257-8972(97)00145-X
 
20. N. Gopalakrishnan, B.C. Shin, H.S. Lim, G.Y. Kim, Y.S. Yu, Comparison of ZnO:GaN films on Si(111) and Si(100) substrates by pulsed laser deposition. Phys. B: Condens. Matter, 376–377, p. 756-759 (2006).
https://doi.org/10.1016/j.physb.2005.12.189
 
21. W. Water, S.-Y. Chu, Physical and structural properties of ZnO sputtered films. Mater. Lett. 55, p. 67-72 (2002).
https://doi.org/10.1016/S0167-577X(01)00621-8
 
22. J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films, 171, p. 5-31 (1989).
https://doi.org/10.1016/0040-6090(89)90030-8
 
23. B.D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley, 1956, p. 431-453.    
 
24. T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films, 516(17), p. 5822-5828 (2008).
https://doi.org/10.1016/j.tsf.2007.10.063

25. T. Minami, H. Nanto, S. Takata, Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field. Appl. Phys. Lett. 41(10), p. 958-960 (1982).
https://doi.org/10.1063/1.93355