Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 297-301.
DOI: https://doi.org/10.15407/spqeo18.03.297


References

1. E.B. Olshanetsky, Z.D. Kvon, Ya.A. Gerasimenko, V.A. Prudkoglyad, V.M. Pudalov, N.N. Mikhailov, and S.A. Dvoretsky, Metal-insulator transition in a HgTe quantum well under hydrostatic pressure. JETP Lett. 98(12), p. 843 (2014).
https://doi.org/10.1134/S0021364013250176
 
2. E.O. Melezhik, J.V. Gumenjuk-Sichevska, S.A. Dvoretskii, Intrinsic concentration dependences in the HgCdTe quantum well in the range of the insulator-semimetal topological transition. Semiconductor Physics, Quantum Electronics & Optoelectronics, 17(2), p. 179 (2014).
https://doi.org/10.15407/spqeo17.02.179
 
3. E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buh¬mann, and L.W. Molenkamp, Band structure of semimagnetic Hg1−yMnyTe quantum wells. Phys. Rev. B, 72, 035321 (2005).
https://doi.org/10.1103/PhysRevB.72.035321
 
4. J.J. Dubowski, T. Dietl, W. Szymanska, R.R. Galazka, Electron scattering in CdxHg1−xTe. J. Phys. Chem. Solids, 42(5), p. 351 (1981).
https://doi.org/10.1016/0022-3697(81)90042-1
 
5. T. Kawamura and S. Das Sarma, Phonon-scattering-limited electron mobilities in AlxGa1−xAs/GaAs heterojunctions. Phys. Rev. B, 45(7), p. 3612 (1992).
https://doi.org/10.1103/PhysRevB.45.3612
 
6. A.V. Liubchenko, E.A. Salkov, F.F. Sizov, Physical Foundations of Semiconductor Infrared Photo-electronics. Naukova Dumka, Kiev, 1984 (in Russian).
 
7. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures. Halsted Press, New York, 1988.
 
8. W. Szymanska and T. Dietl, Electron scattering and transport phenomena in small-gap zinc-blende semiconductors. J. Phys. Chem. Solids, 39, p. 1025-1040 (1978).
https://doi.org/10.1016/0022-3697(78)90155-5
 
9. V. Mitin, A. Kochelap, A. Stroscio, Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press, Cambridge, 1999.
 
10. E.H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B, 75, p. 205418 (2007).
https://doi.org/10.1103/PhysRevB.75.205418
 
11. Ch. Brüne, C. Thienel, M. Stuiber, J. Böttcher, H. Buhmann, E.G. Novik, Chao-Xing Liu, E.M. Hankiewicz, and L.W. Molenkamp, Dirac-screening stabilized surface-state transport in a topological insulator. Phys. Rev. X, 4, 041045 (2014).
https://doi.org/10.1103/PhysRevX.4.041045
 
12. P.K. Basu and B.R. Nag, Lattice scattering mobility of a two-dimensional electron gas in GaAs. Phys. Rev. B, 22(10), p. 4849 (1980).
https://doi.org/10.1103/PhysRevB.22.4849
 
13. Xu Du, D.E. Prober, H. Vora, C.B. Mckitterick, Graphene-based bolometers. Graphene and 2D Materials, 1(1), p. 1 (2014).
 
14. D.B. Farmer, Hsin-Ying Chiu, Yu-Ming Lin, K.A. Jenkins, Fengnian Xia and P. Avouris, Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), p. 4474 (2009).
https://doi.org/10.1021/nl902788u