Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 317-323.
DOI: https://doi.org/10.15407/spqeo18.03.317


References


1. H. Eisele, R.Kamua, Submillimeter-wave InP Gunn devices. IEEE Trans. MTT, 52(10), p. 2371-2378 (2004).
https://doi.org/10.1109/TMTT.2004.835974
 
2. H. Eisele, R. Kamoua, High-perfomance oscillators and power combiners with InP Gunn devices at 260-330 GHz. IEEE MWCL, 16(5), p. 284-286 (2006).
 
3. H. Eisele, Third-harmonic power extraction from InP Gunn devices up to 455 GHz. IEEE MWCL, 19(6), p. 416-418 (2009).
https://doi.org/10.1109/lmwc.2009.2020044
 
4. H. Eisele, 480 GHz oscillator with the InP Gunn devices. Electron. Lett. 46(6), p. 422-423 (2010).
https://doi.org/10.1049/el.2010.3362
 
5. V. Papageorgiou, A. Khalid, C. Li, D.R.S. Cum-ming, Cofabrication of planar Gunn diode and HEMT on InP substrate. IEEE Trans Electron. Dev. 61(8), p. 2779-2784 (2014).
https://doi.org/10.1109/TED.2014.2331368
 
6. M.I. Maricar, A. Khalid, G. Dunn, D. Cumming, C.H. Oxley, Experimentally estimated dead space for GaAs and InP based planar Gunn diodes. Semicond. Sci. Technol. 30, 012001-012005 (2015).
https://doi.org/10.1088/0268-1242/30/1/012001
 
7. M.E. Levinstein, Yu.K. Pozhela, M.S. Shur, Gunn Effect. Sov. Radio, Moscow, 1975 (in Russian).
 
8. Indium Phosphide: Crystal Growth and Characterization, Eds. R.K. Willardson, A.C. Beer. Semiconductor and Semimetals, vol. 31, Academic Press Inc. New York. USA. 1990.
 
9. S.M. Sze, Modern Semiconductor Device Physics. Wiley. New York. USA. 2006.
https://doi.org/10.1002/0470068329
 
10. D.K. Schroder, Semiconductor Materials and Devices Characterization. Wiley. New York. USA. 2006.
 
11. Contacts to Semiconductors. Fundamentals and Technology. Ed. by J. Brillson. Noyes Publ. N.J. USA. 1993.
 
12. P.A. Barnes, R.S. Williams, Alloyed tin-gold ohmic contacts to n-type indium phosphide. SSE, 24(10), p. 907-913 (1981).
https://doi.org/10.1016/0038-1101(81)90111-8
 
13. W.C. Huang, Effect of Au overlayer on PtSi ohmic contacts with n-InP. Appl. Surf. Sci. 245(1), p. 141-148 (2005).
https://doi.org/10.1016/j.apsusc.2004.10.001
 
14. R.T. Tung, The physics and chemistry of the Schottky barrier height. J. Appl. Phys. Rev. 1, 011304-1-011304-54 (2014).
 
15. A.V. Shmargunov, Non-linear dependence of the barrier height on the bias and nature of anomaly inherent to characteristics of contacts with Schottky barrier. Abstracts of theses (Cand. Phys. and Math. Sciences). Tomsk State University, Russian Federation, 2015 (in Russian).
 
16. P. Auvray, A. Guivarch, H. L'Haridon, J.P. Mercier, Formation, microstructure et resistances des contacts Au-Ge/n-GaAs, Au-Ge/n-InP, Au-Zn/p-InP et Au-Be/p-InP. TSF, 127(1), p. 39-68(1985).
https://doi.org/10.1016/0040-6090(85)90211-1
 
17. Ping Jian, D.G. Ivey, R. Bruce, G. Knight, Ohmic contact formation in palladium-based metallization to n-type InP. J. Electron. Mater. 23(9), p. 953-962 (1994).
https://doi.org/10.1007/BF02655370
 
18. T. Clausen, O. Leistiko, Metallurgical optimization for ohmic contacts to InP using conventional metallization schemes. Microelectron. Eng. 18(4), p. 305-325 (1992).
https://doi.org/10.1016/0167-9317(92)90131-A
 
19. N.S. Fatemi, V.G. Weizer, The formation of low resistance electrical contacts to shallow junction InP devices without compromising emitter integrity. J. Electron. Matter. 20(10), p. 875-880 (1991).
https://doi.org/10.1007/BF02665977
 
20. V.S. Fomenko, Emission Properties of Materials. Naukova dumka, Kiev, 1981 (in Russian).
 
21. Wu Deqi, Ding Wuchang, Yang Shanshan, Jia Rui, Jin Zhi, Liu Xinyu. Optimization of ohmic contact for InP-based transferred electronic devices. J. Semiconductors, 35(3), 036001-1-036001-5 (2014).
https://doi.org/10.1088/1674-4926/35/3/036001
 
22. M.A. Abraham, S-Y. Yu, W.H. Choi, R.T.P. Lee, S.E. Mohney, Very low resistance alloyed Ni-based ohmic contacts to InP-capped and uncapped n+In0.53Ga0.47As. J. Appl. Phys. 116(16), 1645061-1645066 (2014).
https://doi.org/10.1063/1.4900535
 
23. D.G. Ivey, Platinum metals in ohmic contacts to III-V semiconductors. Platinum Metals Rev. 43(1), p. 2-12(1999).
 
24. Avishai Katz, Physical and Chemical Deposition of Metals as Ohmic Contacts to InP and Related Materials. Chap. 4. In: Handbook of Compound Semiconductors: Growth, Processing, Characterization and Devices. Eds. P.H. Holloway, G.E. McGuire. Noyes Publ. Park Ridge, New Jersey, USA, 1995.
 
25. S.J. Pearton, Processing of Wide Band Gap Semiconductors: Growth, Processing and Applications. Noyes Publ. Park Ridge. New Jersey, USA, 2000.
 
26. A.E. Belyaev, N.S. Boltovets, R.V. Konakova, Ya.Ya. Kudryk, V.V. Milenin, Diffusion barriers in ohmic contacts to semiconductors device struc-tures: Technology, Properties, Application. Chap.​4. In: Advances in Materials Science Research, vol. 12. Ed. M.C. Wythers. Nova Sci, USA, 2012.
 
27. I.N. Arsentyev, A.V. Bobyl, I.S. Tarasov et al., New technological possibilities to prepare InP epitaxial layers, as well as ohmic and barrier contacts to them and the properties of microwave diodes made on their basis. Semiconductor Physics, Quantum Electronics and Optoelectronics, 8(4), p. 105-114 (2005).
 
28. S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices. 3rd ed. Wiley, New Jersey, USA. 2007.
 
29. L.V. Kasatkin, V.Ye. Chaika, Semiconductor Devices of Millimeter Waveband. Veber, Sevastopol, 2006 (in Russian).
 
30. A.E. Belyaev, V.V. Basanets, N.S. Boltovets et al., Effect of p-n junction over heating on degradation of silicon high-power pulsed IMPATT diodes. Semiconductors, 45(2), p. 253-259 (2011).
https://doi.org/10.1134/S1063782611020047
 
31. A.V. Garmatin, Effect of heating on energetic characteristics of Gunn diodes based on GaAs and InP of millimeter wave band. Elektronnaia tekhnika. Ser. SVCh, 6(354), p. 17-20 (1983), in Russian.
 
32. http://www.ansoft.com/products/tools/ephysics.
 
33. A.V. Gutsul, O.V. Zorenko, Thermal conditions analysis of impat diodes in millimeter-wave pulse generators. Bulletin of National Technical University of Ukraine "KPI". Ser. Radiotechnique. Radioapparatus Building. No. 36, p. 76-80 (2008), in Ukraine.
 
34. Physical Values. Handbook. Eds. I.S. Grigoriyev and Ye.Z. Melikhov. Energoatomizdat, Moscow, 1991 (in Russian).