Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N2. P. 295-298.
DOI: https://doi.org/10.15407/spqeo19.03.295

References

1.    A. Rogalskii (Ed.), Infrared Photon Detectors. SPIE Optical Engineering Press, 1995.
 
2.    A. Rogalski, Optical detectors for focal plane arrays . Opto-Electron. Rev. 12 (2), p. 221-245 (2004).
 
3.    E. Hurwitz, I.P. Donnely, Planar InSb photodiodes fabricated by Be and Mg implantation . Solid State Electron. 18(9), p. 753-756 (1975).
https://doi.org/10.1016/0038-1101(75)90152-5
 
4.    V.P. Astahov, D.A. Gindin, V.V. Karpov et al., Developments in InSb-photodetectors with very-low-level dark current for use in high performance IR CCDs . Prikladnaya Fizika, 2, p. 73-79 (1999), in Russian.
 
5.    V.P. Astahov, D.A. Gindin, V.V. Karpov, A.V. Talimov, On the possibility of increasing the current sensitivity in InSb-based photodiodes . Prikladnaya Fizika 1, p. 56-62 (2002), in Russian.
 
6.    P.V. Birulin, V.I. Turinov, E.B. Yakimov, Characteristics of InSb photodiode linear arrays . Semiconductors (Springer), 38(4), p. 488-503 (2004).
 
7.    H.J. Stocker, Current-voltage characteristics of alloyed and diffused p-n junction diodes in InSb . J. Appl. Phys. 32(2), p. 322 (1961).
https://doi.org/10.1063/1.1735998
 
8.    R. Adar, V. Nemirovsky and I. Kidron, Bulk tunneling contribution to the reverse breakdown characteristics of InSb gate controlled diodes . Solid State Electron. 30(12), p. 1289-1293 (1987).
https://doi.org/10.1016/0038-1101(87)90054-2
 
9.    S.L. Tu, K.F. Huang and S.J. Yang, InSb p-n function with avalanche breakdown behavior . Jpn. J. Appl. Phys. 28(11), p. L1874-L1876 (1989).
https://doi.org/10.1143/JJAP.28.L1874
 
10.    A.M. Filachev, I.D. Burlakov, A.I. Dirochka et al., Fast-operating array photodetective assembly of a 128×128 elements format on the basis of InSb with the frame-accurate accumulation and function of the range finder . Prikladnaya Fizika, 2, p. 21-25 (2005), in Russian.
 
11.    M. Moradi, M. Darace, M. Hajian et al., Optimum concentration of InSb photodiode for minimum low reverse bias leakage current . Ukr. J. Phys. 55(4), p. 422-424 (2010).
 
12.    A. Sukach, V. Tetyorkin, A. Voroschenko, A. Tkachuk et al., Carrier transport mechanisms in InSb diffusion p-n junctions . Semiconductor Physics, Quantum Electronics and Optoelectronics, 17(4), p. 325-330 (2014).
https://doi.org/10.15407/spqeo17.04.325
 
13.    Indium Antimonide Detectors. Catalog. Teledyne Judson Technologies, 2015.
 
14.    A.V. Sukach, V.V. Tetyorkin, A.I. Tkachuk, Carrier transport mechanisms in reverse biased InSb p-n junctions . Semiconductor Physics, Quantum Electronics and Optoelectronics, 18(3), p. 267-271 (2015).
https://doi.org/10.15407/spqeo18.03.267
 
15.    V. Tetyorkin, A. Sukach and A. Tkachuk, InAs infrared photodiodes . Advances in Photodiode. Ed. Gian-Franco Dalla Betta, INTECH, p. 427-446, 2011.
 
16.    F. Dewald, The kinetics and mechanism of formation of anode films on single crystal InSb . J. Electrochem. Soc. 104(4), p. 244-251 (1957).
https://doi.org/10.1149/1.2428546
 
17.    M. Schröder, Semiconductor Materials and Devise Characterization. Wiley, 2006.
 
18.    Yu.F. Bikovskii, L.A. Vjukov, A.G. Dudoladov et al., Investigation of MIS film structures based on CdTe-InSb . Pisma Zhurnal Tekhn. Fiziki, 9(17), p. 1071-1074 (1983), in Russian.
 
19.    S.M. Sze, Physics of Semiconductors Devices. Second Edition, Wiley, 1981.
 
20.    B.I. Boltaks, V.I. Sokolov, Investigation of cadmium diffusion in indium antimonide by layer autoradiography method . Fizika Tverdogo Tela, 5(4), p. 1077-1081 (1963), in Russian.