Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N2. P. 315-317.
DOI: https://doi.org/10.15407/spqeo19.03.315

References

1.    S. Viola Kusminskiy, D.K. Campbell, and A.H. Castro Neto, Lenosky's energy and the phonon dispersion of graphene // Phys. Rev. B, 80, p. 035401-1–035401-5 (2009).
https://doi.org/10.1103/PhysRevB.80.035401
 
2.    M. Neek-Amal, Graphene nanoribbons subjected to axial stress // Phys. Rev. B, 82, p. 085432-1–085432-6 (2010).
https://doi.org/10.1103/PhysRevB.82.085432
 
3.    D. Cheliotis, B. Virág, The spectrum of the random environment and localization of noise // Probab. Theory Relat. Fields, 148, p. 141-158 (2010).
https://doi.org/10.1007/s00440-009-0225-7
 
4.    Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening // ACS Nano, 2, p. 2301-2305 (2008).
https://doi.org/10.1021/nn800459e
 
5.    S.Yu. Davydov, Model of adsorption on amorphous graphene // Semiconductors, 50(3), p. 377-383 (2016).
https://doi.org/10.1134/S1063782616030052
 
6.    S.Yu. Davydov, On the density of states of disordered epitaxial graphene // Semiconductors, 49(5), p. 615-620 (2015).
https://doi.org/10.1134/S1063782615050061
 
7.    Koh Wada, Takehiko Fujita, Takashi Asahi, Lattice Vibration of the Cayley Tree // Progr. Theor. Phys. 59, No. 4, p. 1101-1114 (1978).
https://doi.org/10.1143/PTP.59.1101
 
8.    H. Böttger, Principles of the Theory of Lattice Dynamics. Physik-Verlag, 1983.
 
9.    R. Alben, D. Weaire, J.E. Smith, M.H. Brodsky, Vibrational properties of amorphous Si and Ge // Phys. Rev. B, 11, No.6, p. 2271-2295 (1975).
https://doi.org/10.1103/PhysRevB.11.2271
 
10.    V. Adamyan, V. Zavalniuk, Phonons in graphene with defects // J. Phys: Condens. Matter, 24, 015402 (10 p.) (2011).
 
11.    M. Mohr, J. Maultzsch, E. Dobardžić et al., Phonon dispersion of graphite by inelastic X-ray scattering // Phys. Rev. B, 76, 035439 (2007).
https://doi.org/10.1103/PhysRevB.76.035439