Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19,
N2. P. 315-317. https://doi.org/10.1103/PhysRevB.80.035401 2. M. Neek-Amal, Graphene nanoribbons subjected to axial stress // Phys. Rev. B, 82, p. 085432-1–085432-6 (2010). https://doi.org/10.1103/PhysRevB.82.085432 3. D. Cheliotis, B. Virág, The spectrum of the random environment and localization of noise // Probab. Theory Relat. Fields, 148, p. 141-158 (2010). https://doi.org/10.1007/s00440-009-0225-7 4. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening // ACS Nano, 2, p. 2301-2305 (2008). https://doi.org/10.1021/nn800459e 5. S.Yu. Davydov, Model of adsorption on amorphous graphene // Semiconductors, 50(3), p. 377-383 (2016). https://doi.org/10.1134/S1063782616030052 6. S.Yu. Davydov, On the density of states of disordered epitaxial graphene // Semiconductors, 49(5), p. 615-620 (2015). https://doi.org/10.1134/S1063782615050061 7. Koh Wada, Takehiko Fujita, Takashi Asahi, Lattice Vibration of the Cayley Tree // Progr. Theor. Phys. 59, No. 4, p. 1101-1114 (1978). https://doi.org/10.1143/PTP.59.1101 8. H. Böttger, Principles of the Theory of Lattice Dynamics. Physik-Verlag, 1983. 9. R. Alben, D. Weaire, J.E. Smith, M.H. Brodsky, Vibrational properties of amorphous Si and Ge // Phys. Rev. B, 11, No.6, p. 2271-2295 (1975). https://doi.org/10.1103/PhysRevB.11.2271 10. V. Adamyan, V. Zavalniuk, Phonons in graphene with defects // J. Phys: Condens. Matter, 24, 015402 (10 p.) (2011). 11. M. Mohr, J. Maultzsch, E. Dobardžić et al., Phonon dispersion of graphite by inelastic X-ray scattering // Phys. Rev. B, 76, 035439 (2007). https://doi.org/10.1103/PhysRevB.76.035439 |