Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 273-283 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.273


References

1.    Dhillon S.S., Vitiello M.S., Linfield E.H. et al. (32 Co-Authors). The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 2017. 50. P. 043001.
https://doi.org/10.1088/1361-6463/50/4/043001
 
2.    Pakhomov A.G., Akyel Y., Pakhomova O.N., Stuck B.E., and Murphy M.R. Current state and implications of research on biological effects of millimeter waves: A review of literature. Bio Electro Magnetics. 1998. 19, No. 7. P. 393–413.
https://doi.org/10.1002/(SICI)1521-186X(1998)19:7<393::AID-BEM1>3.0.CO;2-X
 
3.    Hochrein T. Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends. J. Infrared, Millimeter, Terahertz Waves. 2015. 36. P. 235–254.
https://doi.org/10.1007/s10762-014-0124-6
 
4.    Lettington A.H., Blankson I.M., Attia M., and Dunn D. Review of imaging architecture, Proc. SPIE. 2002. 4719. P. 327–340.
https://doi.org/10.1117/12.477457
 
5.    Bitelli G., Conte P., Csoknyai T., Franci F., Girelli V.A. and Mandanici E. Aerial thermography for energetic modeling of cities. Remote Sens. 2015. 7, No. 2. P. 2152–2170.
https://doi.org/10.3390/rs70202152
 
6.    Rogalski A., and Sizov F. Terahertz detectors and focal plane arrays. Opto-Electr. Rev. 2011. 19, No. 3. P. 346–404.
 
7.    Assessment of millimeter-wave and terahertz technology for detection and identification of concealed explosives and weapons. Committee on Assessment of Security Technologies for Transportation (2007), www.nap.edu.
 
8.    Holst G. Common Sense Approach to Thermal Imaging. SPIE Optical Eng. Press, Bellingham, 2000.
 
9.    Maldague X. Theory and Practice of Infrared Technology for Nondestructive Testing. N.Y., US, Wiley, 2001.
 
10.    Ibarra-Castanedo C., Bendara A., Maldague X.P.V. Infrared vision applications for the nondestructive testing of materials. 5-th Pan American Conf. for NDT, October 2-6, 2011, Cancun, Mexico.
 
11.    Holst G.C. Electro-optical Imaging System Performance. SPIE Optical Eng. Press, Bellingham WA, USA. 2003.
 
12.    Karpowicz N., Zhong H., Xu J., Lin Kuang-I., Hwang J.-S., and Zhang X.-C. Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semicond. Sci. Technol. 2005. 20. P. S293–S299.
https://doi.org/10.1088/0268-1242/20/7/021
 
13.    Chattopadhyay G. Submillimeter-wave coherent and incoherent sensors for space applications, in: Sensors, eds. S.C. Mukhopadhyay and R.Y.M. Huang. Springer, New York, 2008. P. 387–414.
https://doi.org/10.1007/978-3-540-69033-7_19
 
14.    Crowe T.W., Bishop W.L., Porterfield D.W., Hesler J.L., and Weikle R.M. Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits. 2005. 40. P. 2104–2110.
https://doi.org/10.1109/JSSC.2005.854599
 
15.    Chan W.L., Deibel J. and Mittleman D.M. Imaging with terahertz radiation. Rep. Prog. Phys. 2007. 70. P. 1325–1379.
https://doi.org/10.1088/0034-4885/70/8/R02
 
16.    Dragoman D. and Dragoman M. Terahertz fields and applications. Prog. Quant. Electron. 2004. 28. P. 1–66.
https://doi.org/10.1016/S0079-6727(03)00058-2
 
17.    Hintzsche H. and Stopper H. Effects of terahertz radiation on biological systems. Critical Rev. Envi-ronmental Sci. Technol. 2012. 42. P. 2408–2434.
 
18.    Sizov F., Rogalski A. THz detectors. Progr. Quant. Electr. 2010. 34. P. 278–347.
https://doi.org/10.1016/j.pquantelec.2010.06.002
 
19.    Blaney T.G. Signal-to-noise ratio and other characteristics of heterodyne radiation receivers. Space Sc. Rev. 1975. 17. P. 691–702.
https://doi.org/10.1007/BF00727583
 
20.    Richards P. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994. 76. P. 1–24.
https://doi.org/10.1063/1.357128
 
21.    Siegel P.H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Techn. 2004. 52, No. 10. P. 2438–2447.
https://doi.org/10.1109/TMTT.2004.835916
 
22.    Zhao G., Mors M., Wenckebach T. and Planken P. Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. B. 2002. 19, No. 6. P. 1476–1479.
https://doi.org/10.1364/JOSAB.19.001476
 
23.    Hartwick T.S., Hodges D.T., Barker D.H., and Foote F.B. Far infrared imagery. Appl. Opt. 1976. 15. P. 1919–1922.
https://doi.org/10.1364/AO.15.001919
 
24.    Busch S., Weidenbach M., Fey M., Schafer F., Probst T., and Koch M. Optical properties of 3D prin¬table plastics in the THz regime and their ap¬pli-cation for 3D printed THz optics. J. Infrared, Milli-meter, Terahertz Waves. 2014. 35. P. 993–997.
https://doi.org/10.1007/s10762-014-0113-9
 
25.    Gatesman A.J., Danylov A., Goyette T.M. et al. Terahertz behavior of optical components and common materials. Proc. SPIE. 2006. 6212. P. 6212OE.
 
26.    Loffler T., Siebert K., Czasch S., Bauer T., and Roskos H.G. Visualization and classification in biomedical terahertz pulsed imaging. Phys. Med. Biol. 2002. 47. P. 3847–3852.
https://doi.org/10.1088/0031-9155/47/21/324
 
27.    Nagel M., Forst M., and Kurz H. THz biosensing devices: fundamentals and technology. J. Phys. Condens. Matter. 2006. 18. P. S601–S618.
https://doi.org/10.1088/0953-8984/18/18/S07
 
28.    Bronzino J.D., and Peterson D.R. Biomedical Engineering Handbook – Biomedical Signals, Imaging, and Informatics (4-th Ed.). CRC Press, Boca Raton, 2017.
 
29.    Chen H.-T., Kersting R., and Cho G.Ch. Terahertz imaging with nanometer resolution, Appl. Phys. Lett. 2003. 83, No. 15. P. 3009–3011.
https://doi.org/10.1063/1.1616668
 
30.    Federici J. and Moeller L. Review of terahertz and subterahertz wireless communications. 2010. J. Appl. Phys. 107. P. 111101.
https://doi.org/10.1063/1.3386413
 
31.    Kleine-Ostmann T. and Nagatsuma T. A review on terahertz communications research. J. Infrared, Millimeter, Terahertz Waves. 2011. 32. P. 143–171.
https://doi.org/10.1007/s10762-010-9758-1
 
32.    Akyildiz I., Jornet J., Han C. Terahertz band: Next frontier for wireless communications. Phys. Commun. 2014. 12. P. 16–32.
https://doi.org/10.1016/j.phycom.2014.01.006
 
33.    Seeing Photons: Progress and Limits of Visible and Infrared Sensor Arrays. Committee on Developments in Detector Technologies; National Research Council, ISBN 978-0-309-15304-1. 2010.
 
34.    The RF and Microwave Handbook, Editor in Chief Mike Golio. CRC Press LLC, USA, Boca Raton, 2001.
 
35.    Sensing with Terahertz Radiation, Ed. D. Mittleman. Berlin-Heidelberg-New York, Springer Verlag, 2003.
 
36.    Bründermann E., Hübers H.-W., and Kimmitt M.F. Terahertz Techniques. Springer, Heidelberg, 2011.
 
37.    Yun-Shik Lee, Principles of Terahertz Science and Technology. Springer Science+Business Media, LLC, 2009.
 
38.    Handbook of Terahertz Technology for Imaging, Sensing and Communications, Ed. D. Saeedkia. Oxford, Cambridge, Philadelphia, New Delhi, Woodhead Publishing Limited, 2013.
 
39.    Terahertz Spectroscopy and Imaging, Eds. Kai-Erik Peiponen, J. Axel Zeitler, Makoto Kuwata-Gonokami. Springer-Verlag, Berlin-Heidelberg, 2013.
 
40.    Haynie D.T. Biological Thermodynamics. Cambridge University Press, Cambridge, 2001.
https://doi.org/10.1017/CBO9780511754784
 
41.    Ring E.F.J., Ammer K. The technique of infrared imaging in medicine. Thermol. Int. 2000. 10. P. 7–14.
 
42.    Raghavendra U., Acharya U.R., Ng E.Y.K., Tan J.-H., and Gudigar A. An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms. Quantitative InfraRed Thermography J. 2016. 13, No. 2. P. 195–209.
https://doi.org/10.1080/17686733.2016.1176734
 
43.    Corsi C. New frontiers for infrared. Opto-Electron. Rev. 2015. 23, No. 1. P. 3–25.
https://doi.org/10.1515/oere-2015-0015
 
44.    Medical Infrared Imaging: Principles and Practices, Eds. M. Diakides, J.D. Bronzino, and D.R. Peterson. CRC Press, Boca Raton, 2013.
 
45.    Terahertz Biomedical Science and Technology, Ed. J.-H. Son. CRC Press, Boca Raton, 2013.
 
46.    Kasban H., El-Bendary M.A.M., and Salama D.H. A comparative study of medical imaging techniques. Int. J. Information Sci. Intelligent System. 2015. 4, No. 2. P. 37–58.
 
47.    Chou C.K., Andrea J. (Eds.), IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, C95.1-2005, 2006.
 
48.    http://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer.
 
49.    World Health Organization Fact Sheet, 2017, http://www.who.int/features/factfiles/cancer/en/.
 
50.    http://www.world-heart-federation.org/cardiovascular-health/global-facts-map/.
 
51.    Panwar A.K., Singh A., Kumar A., and Kim H. Terahertz imaging system for biomedical applications: Current status. Int. J. Eng. Technol. 2013. 13. P. 33–39.
 
52.    Pickwell E. and Wallace V.P. Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 2006. 39. P. R301–R310.
https://doi.org/10.1088/0022-3727/39/17/R01
 
53.    Khodayar F., Sojasi S., and Maldague X. Infrared thermography and NDT: 2050 horizon. Quantitative InfraRed Thermagraphy. 2016. 13, No. 2. P. 210–231.
https://doi.org/10.1080/17686733.2016.1200265
 
54.    Berz R., and Sauer H. The medical use of infrared-thermography. History and recent applications. Thermografie-Kolloquium-2007, Vortrag 04, 1-12, 2007 (www.ndt.net/search/docs.php3?MainSource=61).
 
55.    Jha A.R. Infrared Technology: Applications to Electro-Optics, Photonic Devices and Sensors. Wiley, N.Y., 2000.
 
56.    Rieke G.H. Infrared detector arrays for astronomy. Annu. Rev. Astro. Astrophys. 2007. 45. P. 77–115.
https://doi.org/10.1146/annurev.astro.44.051905.092436
 
57.    Ratches J.A. Current and future trends in military night vision applications. Ferroelectrics. 2006. 342. P. 183–192.
https://doi.org/10.1080/00150190600946351
 
58.    Cozzolino D. and Murray I. A review on the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood. J. Appl. Spectroscopy Rev. 2012. 47, No. 3. P. 207–218.
https://doi.org/10.1080/05704928.2011.639106
 
59.    Bellisola G., Sorio C. Infrared spectroscopy and microscopy in cancer research and diagnosis. Am. J. Cancer Res. 2012. 2, No. 1. P. 1–21.
 
60.    Jiang L.J., Ng E.Y.K., Yep A.C.B., Wu S., Pan F., Yau W.Y., Chen J.H., and Yang Y. A perspective on medical infrared imaging. J. Med. Eng. &Techn. 2005. 29, No. 6. P. 257–267.
https://doi.org/10.1080/03091900512331333158
 
61.    Head J.F. and Elliott R.L. Infrared imaging: making progress in fulfilling its medical promise. IEEE Eng. Medicine & Biology Mag. 2002. 21. P. 80–85.
https://doi.org/10.1109/MEMB.2002.1175142
 
62.    Eisele M., Cocker T.L., Huber M.A., Plankl M., Viti L., Ercolani D., Sorba L., Vitiello M.S., and Huber R. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics. 2014. 8. P. 841–845.
https://doi.org/10.1038/nphoton.2014.225
 
63.    Ayesha Y. Imagerie Térahertz 2D et 3D: Application pour l'étude des matériaux du patrimoine culturel. These, L'Universite de Bordeaux, 2011.
 
64.    Lewis R.A. Terahertz transmission, scattering, reflection, and absorption: The interaction of THz radiation with soils. J. Infrared, Millimeter, Terahertz Waves. 2017. 38, No. 7. P. 799–807.
https://doi.org/10.1007/s10762-017-0384-z
 
65.    Romanenko S., Siegel P.H., Wagenaar D.A., and Pikov V. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J. Neurophysiol. 2014. 112, No. 10. P. 2423–2431.
https://doi.org/10.1152/jn.00357.2014
 
66.    Peter B.St., Yngvesson S., Siqueira P., Kelly P., Khan A., Glick S., and Karellas A. Development and testing of a single frequency terahertz imaging system for breast cancer detection. IEEE J. Biomed. Health Inform. 2013. 17, No. 4. P. 785–797.
https://doi.org/10.1109/JBHI.2013.2267351
 
67.    Hu B.B. and Nuss M.C. Imaging with terahertz waves. Opt. Lett. 1995. 20, No. 16. P. 1716–1718.
https://doi.org/10.1364/OL.20.001716
 
68.    Zhang C.H., Zhao G.F., Jin B.B., Hou Y.Y., Jia H.H., Chen J., and Wu P.H. Terahertz imaging on subcutaneous tissues and liver inflamed by liver cancer cells. Terahertz Sci. Technol. 2012. 5, No. 3. P. 114–123.
 
69.    Nakajima S., Hoshina H., Yamashita M., Otani C. and Miyoshi N. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl. Phys. Lett. 2007. 90. P. 041102.
https://doi.org/10.1063/1.2433035
 
70.    Brun M.A., Formanek F., Yasuda A., Sekine M., Ando N. and Eishii Y. Terahertz imaging applied to cancer diagnosis. Phys. Med. Biol. 2010. 55. P. 4615–4623.
https://doi.org/10.1088/0031-9155/55/16/001
 
71.    Fitzgerald A.J., Wallace V.P., Jimenez-Linan M., Bobrow L., Pye R.J., Purushotham A.D. and Arnone D.D. Terahertz pulsed imaging of human breast tumors. Radiology. 2006. 239. P. 533–540.
https://doi.org/10.1148/radiol.2392041315
 
72.    Grachev Y.V., Kuklin I.A., Gerasimov I.V., Smolyanskay O.A., Kozlov S.A., and Bespalov V.G. Study of how radiation of the frequency range 0.05–2 THz affects biological tissues of various thickness in medical diagnosis. J. Opt. Technol. 2010. 77, No. 11. P. 731–733.
https://doi.org/10.1364/JOT.77.000731
 
73.    Zhang R., Zhang L., Wu T., Zuo Sh., Wang R., Zhang C., Zhang J., and Fang J. Contrast-enhanced continuous-terahertz-wave imaging based on superparamagnetic iron oxide nanoparticles for biomedical applications. Opt. Express. 2016. 24, No. 8. P. 257234.
https://doi.org/10.1364/OE.24.007915
 
74.    Szentkuti A., Kavanagh H.S., Grazio S. Infrared thermography and image analysis for biomedical use. Periodicum Biologorum. 2011. 113, No. 4. P. 385–392.
 
75.    Kawamura J., Paine S., and Papa D.C. Spectroscopic measurements of optical elements for submillimeter receivers. Proc. 7-th Intern. Symp. on Space Terahertz Technology. Charlotteswille, 1996. P. 349–355.
 
76.    Naftaly M. and Miles R.E. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE. 2007. 95, No. 8. P. 1658–1665.
https://doi.org/10.1109/JPROC.2007.898835
 
77.    Grichkowsky D., Keiding S., Van Exter M., and Fattinger Ch. Far-infrared time-domain spectroscopy with terahertz beams of dielectric and semiconductors. J. Opt. Soc. Amer. 1990. 7, No. 10. P. 2006–2015.
https://doi.org/10.1364/JOSAB.7.002006
 
78.    Chen J., Chen Yu., Zhao H., Bastiaans G.J., and Zhang X.-C. Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz. Opt. Express. 2007. 15, No. 19. P. 12060–12067.
https://doi.org/10.1364/OE.15.012060
 
79.    Siebert K., Loffler T., Quast H., Thomson M., Bauer T., Leonhardt R., Czasch S. and Roskos H.G. All-optoelectronic continuous wave THz imaging for biomedical applications. Phys. Med. Biol. 2002. 47. P. 3743–3748.
https://doi.org/10.1088/0031-9155/47/21/310