Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3),
P. 325-329 (2017). References 1. Savin H., Repo P., Gastrow G., Ortega P., Calle E., Garín M., Alcubilla R. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nature Nanotechnology. 2015. 10, No.7. P. 624–628.https://doi.org/10.1038/nnano.2015.89 2. Bett A.J., Eisenlohr J., Höhn O., Repo P., Savin H., Bläsi B., Goldschmidt J.C. Wave optical simulation of the light trapping properties of black silicon surface textures. Opt. Express. 2016. 24, No. 6. P. A434–A445. https://doi.org/10.1364/OE.24.00A434 3. Karachevtseva L.A., Lytvynenko O.O., Konin K.P., Parshyn K.A., Sapelnikova O.Yu., Stronska O.J. Electro-optical effects in 2D macroporous silicon structures with nanocoatings. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. 8, No. 4. P. 377–384. https://doi.org/10.15407/spqeo18.04.377 4. Karachevtseva L.A., Kartel M.T., Lytvynenko O.O., Onyshchenko V.F., Stronska O.J. Polymer-nanoparticle coatings on macroporous silicon matrix. Adv. Mater. Lett. 2017. 8, No. 4. P. 336–341. https://doi.org/10.5185/amlett.2017.1412 5. Oh J., Yuan H.-C. & Branz H.M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotechnology. 2012. 7, No. 11. P. 743–748. https://doi.org/10.1038/nnano.2012.166 6. Koynov S., Brandt M.S & Stutzmann M. Black multi-crystalline silicon solar cells. phys. status solidi RRL. 2007. 1, No. 2. P. R53–R55. 7. Garnett E., Yang P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010. 10, No. 3. P. 1082–1087. https://doi.org/10.1021/nl100161z 8. Huang Z., Carey J.E., Liu M., Guo X., Mazur E., Campbell J.C. Microstructured silicon photodetector. Appl. Phys. Lett. 2006. 89, No. 3. P. 033506-033508. https://doi.org/10.1063/1.2227629 9. Juntunen M.A., Heinonen J., Vähänissi V., Repo P., Valluru D., Savin H. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction. Nature Photonics. 2016. 10, No. 12. P. 777–781. https://doi.org/10.1038/nphoton.2016.226 10. Otto M., Algasinger M., Branz H., Geseman B. et al. Black silicon photovoltaics. Adv. Opt. Mater. 2015. 3, No. 2. P. 147–164. https://doi.org/10.1002/adom.201400395 11. Zhong S.H., Liu B.W., Xia Y., Liu J.H., Liu J., Shen Z.N., Xu Z., Li C.B. Influence of the texturing structure on the properties of black silicon solar cell. Sol. Energ. Mat. Sol. C. 2013. 108. P. 200–204. https://doi.org/10.1016/j.solmat.2012.10.001 12. Repo P., Haarahiltunen A., Sainiemi L., Yli-Koski M., Talvitie H. et al. Effective passivation of black silicon surfaces by atomic layer deposition. IEEE J. Photovolt. 2013. 3, No. 1. P. 90–94. https://doi.org/10.1109/JPHOTOV.2012.2210031 13. Otto M., Kroll M., Käsebier T., Salzer R., Tünnermann A., Wehrspohn R.B. Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition. Appl. Phys. Lett. 2012. 100, No. 19. P. 191603–91606. https://doi.org/10.1063/1.4714546 14. Gesemann B., Wehrspohn R., Hackner A. and Müller G. Large-scale fabrication of ordered silicon nanotip arrays used for gas ionization in ion mobility spectrometers. IEEE Trans. Nanotechnol. 2011. 10, No. 1. P. 50–52. https://doi.org/10.1109/TNANO.2010.2053046 15. Hoyer P., Theuer M., Beigang R. and Kley E.-B. Terahertz emission from black silicon. Appl. Phys. Lett. 2008. 93, No. 9. P. 091106-1–091106-3. https://doi.org/10.1063/1.2978096 16. Ernst M., Brendel R. Modeling effective carrier lifetimes of passivated macroporous silicon layers. Solar Energy Materials and Solar Cells. 2011. 95, No. 4. P. 1197–1202. https://doi.org/10.1016/j.solmat.2011.01.017 17. Onyshchenko V.F. Distribution of non-equilibrium charge carriers in macroporous silicon structure under conditions of their homogeneous generation over the simple bulk. Optoelectronics and Semiconductor Technique. 2015. 50. P. 125–131 (in Ukrainian). 18. Plakhotnyuk M., Schmidt D.R., Stenbæk S.M., Malureanu R., Stamate E., Hansen O. Lifetime of nano-structured black silicon for photovoltaic applications. Proc. 32-nd Europ. Photovolt. Solar Energy Conf. and Exhibition. IEEE. 2016. P. 764–767. |