Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 330-334 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.330


References

1.    Hazar S., Ray S. Nanocrystalline silicon as intrinsic layer in thin film solar cells. Solid State Communs. 1998. 109. P. 125–128.
https://doi.org/10.1016/S0038-1098(98)00522-5
 
2.    Schropp R.E.I., Rath J.K., Li H. Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells. J. Crystal Growth. 2009. 311. P. 760–764.
https://doi.org/10.1016/j.jcrysgro.2008.09.155
 
3.    S. Guha, J. Yang, B. Yan, High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon. Solar Energy Materials & Solar Cells. 2013. 119. P. 1–11.
https://doi.org/10.1016/j.solmat.2013.03.036
 
4.    Nasuno J., Kondo M., Matsuda A., Key M. Issue for the fabrication of high-efficiency micro-crystalline silicon thin-film solar cells at low temperature. Jpn. J. Appl. Phys. 2002. 41. P. 5912–5915.
https://doi.org/10.1143/JJAP.41.5912
 
5.    Shah A., Meier J., Vallat-Sauvain E., Droz C., Graf U. Microcrystalline silicon and micromorph tandem solar cell. Thin Solid Films. 2002. 179. P. 403–404.
https://doi.org/10.1016/S0040-6090(01)01658-3
 
6.    Hsiao H.L., Hwang H.L., Yew T.R. Study on low temperature faceting growth of polycrystalline silicon thin film by ECR downstream plasma CVD with different hydrogen dilution. Appl. Surf. Sci. 1999. 142. P. 316–322.
https://doi.org/10.1016/S0169-4332(98)00701-6
 
7.    Scott B.A., Reimer J.E., Reuter W. Low defect density amorphous hydrogenated silicon prepared byhomogeneous chemical vapor deposition. Appl. Phys. Lett. 1982. 40. P. 973.
https://doi.org/10.1063/1.92972
 
8.    Acciarri M., Binetti S., Bollani M., von Kane H. Nanocrystalline silicon film growth by LE-PECVD for photovoltaic application. Sol. Energ. Mat. Sol. C. 2005. 87. P. 11–16.
https://doi.org/10.1016/j.solmat.2004.09.012
 
9.    Fonrodona M., Soler D., Escarre J., Mohammed-Brahim T. Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate. Thin Solid Films. 2006. 501. P. 303–308.
https://doi.org/10.1016/j.tsf.2005.07.217
 
10.    Saleh R., Nickel N.H. Raman spectroscopy of B-doped microcrystalline silicon films. Thin Solid Films. 2003. 427. P. 266.
https://doi.org/10.1016/S0040-6090(02)01203-8
 
11.    Das D. A novel approach towards silicon nanotechnology. J. Phys. D: Appl. Phys. 2003. 36. P. 2335–2340.
https://doi.org/10.1088/0022-3727/36/19/004
 
12.    Pevtsov A.B., Feoktistov N.A. Photoluminescence of thin amorphous-nanocrystalline silicon film. Tech. Phys. Lett. 2002. 28/4. P. 305–311.
https://doi.org/10.1134/1.1476999
 
13.    T Shimizu., Nakazawa K., Kumeda M., Veda S. Defects in hydrogenated amorphous silicon films prepared by glow discharge decomposition and sputtering. Physica B/C. 1983. 117/118. P. 926.
https://doi.org/10.1016/0378-4363(83)90696-4
 
14.    Santos P., Johnson N., Stree R. Light-enhanced hydrogen motion in a-Si:H. Phys. Rev. Lett. 1991. 67. P. 2686–2691.
https://doi.org/10.1103/PhysRevLett.67.2686
 
15.    Khodin A., Lee J.K., Kim C.S. Nanomorph silicon grown on template alumina substrate by plasma-enhanced CVD. Mat. Lett. 2009. 63. P. 2552–2555.
https://doi.org/10.1016/j.matlet.2009.09.002
 
16.    Kizjak A.Yu., Evtukh A.A., Steblova O.V. Formation of nanoporous Al2O3 films. Sensor Electron. and Microsyst. Technol. 2016. 13. P. 83–92.
https://doi.org/10.18524/1815-7459.2016.4.86662
 
17.    Gaisler S.V., Semenova O.I., Sharafutdinov R.G., Kolesov B.A. Analysis of Raman spectra of amorphous-nanocrystalline silicon films. Phys. Solid State. 2004. 46, No. 8. P. 1528–1532.
https://doi.org/10.1134/1.1788789
 
18.    Khodin A., Lee J.K., Kim C.S. Hydrogenated amorphous/nanocrystalline silicon thin films on porous anodic alumina substrate. Sur. Rev. and Lett. 2010. 17. P. 283–287.
https://doi.org/10.1142/S0218625X10013679
 
19.    Voigt F., Briggermann R., Unold T., Huisken F. Po-rous thin films grown from size-selected silicon nano¬crystals. Mater. Sci. Eng. C. 2006. 25. P. 584–589.
https://doi.org/10.1016/j.msec.2005.06.035