Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 355-361 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.355


References

1.    Dufour C. and Toulemonde M. Ion Beam Modification of Solid. Springer Series in Surface Sciences, vol 61. Springer, Cham.
 
2.    Crowder B.L., Ion Implantation in Semiconductors. Springer, Berlin, Heidelberg, 1971.
 
3.    Melnik V., Popov V., Kruger D., and Oberemok O. AES and XPS characterization of TiN layers formed and modified by ion implantation. Semiconductor Physics, Quantum Electronics and Optoelectronics. 1999. 2, No. 3. P. 81–85.
 
4.    Gamov D.V., Gudymenko O.I., Kladko V.P. et al. Research of recombination characteristics of Cz-Si implanted with iron ions. Ukr. J. Phys. 2013. 58, No. 9. P. 881–887.
https://doi.org/10.15407/ujpe58.09.0881
 
5.    Oberemok O.S.; Litovchenko V.G.; Gamov D.V. et al. Formation of silicon nanoclusters in buried ultra-thin oxide layers. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2011. 14, No. 3. P. 269–272.
https://doi.org/10.15407/spqeo14.03.269
 
6.    Ion beam applications in surface and bulk modification of insulators. International Atomic Energy Agency, 2008.
 
7.    Kladko V., Kuchuk A., Lytvyn P. et al. Substrate effects on the strain relaxation in GaN/AlN short-period superlattices. Nanoscale Res. Lett. 2012. 7, No. 1. P. 289-298.
https://doi.org/10.1186/1556-276X-7-289
 
8.    Kladko V.P., Kuchuk A.V., Safryuk N.V. et al. Mechanism of strain relaxation by twisted nanocolumns revealed in AlGaN/GaN heterostructures. Appl. Phys. Lett. 2009. 95. P. 031907.
https://doi.org/10.1063/1.3184569
 
9.    Kladko V.P., Kuchuk A.V., Safryuk N.V. et al. Influence of template type and buffer strain on structural properties of GaN multilayer quantum wells grown by PAMBE, an x-ray study. J. Phys. D: Appl. Phys. 2011. 44. P. 025403.
https://doi.org/10.1088/0022-3727/44/2/025403
 
10.    Klappe J.G.E., Bársony I., Liefting J.R., and Ryan T.W. Optimization of ion implantation damage annealing by means of high-resolution X-ray diffraction. Thin Solid Films. 1993. 235, No. 1–2. P. 189–197.
https://doi.org/10.1016/0040-6090(93)90264-P
 
11.    Klappe J.G.E. and Fewster P.F. Fitting of rocking curves from ion-implanted semiconductors. J. Appl. Crystallogr. 1994. 27, No. 1. P. 103–110.
https://doi.org/10.1107/S0021889893007484
 
12.    Bleicher L., Sasaki J.M., Orloski R.V., Cardoso L.P., Hayashi M.A., and Swart J.W. IonRock: Software for solving strain gradients of ion-implanted semiconductors by X-ray diffraction measurements and evolutionary programming. Comput. Phys. Commun. 2004. 160, No. 2. P. 158–165.
https://doi.org/10.1016/j.cpc.2004.02.015
 
13.    Milita S., Servidori M. X-ray rocking-curve analysis of crystals with buried amorphous layers. Case of ion-implanted silicon. J. Appl. Crystallogr. 1995. 28, No. 6. P. 666–672.
https://doi.org/10.1107/S0021889895007114
 
14.    Milita S. and Servidori M. Damage in ion implanted silicon measured by x-ray diffraction. J. Appl. Phys. 1996. 79, No. 11. P. 8278–8284.
https://doi.org/10.1063/1.362482
 
15.    Kyutt R.N., Petrashen P.V., and Sorokin L.M. Strain profiles in ion-doped silicon obtained from X-ray rocking curves. phys. status solidi. 1980. 60, No. 2. P. 381–389.
 
16.    Speriosu V.S. Kinematical x-ray diffraction in non-uniform crystalline films: Strain and damage distributions in ion-implanted garnets. J. Appl. Phys. 1981. 5, No. 10. P. 6094–6103.
https://doi.org/10.1063/1.328549
 
17.    Bartels W.J., Hornstra J., and Lobeek D.J.W. X-ray diffraction of multilayers and superlattices. Acta Crystallogr. A. 1986. 42, No. 6. P. 539–545.
https://doi.org/10.1107/S0108767386098768
 
18.    Boulle A. and Debelle A. Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. J. Appl. Crystallogr. 2010. 43, No. 5. P. 1046–1052.
https://doi.org/10.1107/S0021889810030281
 
19.    Hill M.J., Tanner B.K., Halliwell A.G., and Lyons M.H. Simulation of X-ray double-crystal rocking curves of multiple and inhomogeneous heteroepitaxial layers. J. Appl. Crystallogr. 1985. 18, No. 6. P. 446.
https://doi.org/10.1107/S002188988501069X
 
20.    Lagomarsino S., Giannini C., Guagliardi A., Cedola A., Scarinci F., and Aruta C. An automatic analysis of strain-depth profile in X-ray microdiffraction. Phys. B: Condens. Matter. 2004. 353, No. 1–2. P. 104–110.
https://doi.org/10.1016/j.physb.2004.09.065
 
21.    Olikhovskii S.I., Molodkin V.B., Skakunova O.S. et al. Dynamical X-ray diffraction theory: Characterization of defects and strains in as-grown and ion-implanted garnet structures. phys. status solidi. 2017. 254, Issue 7. P. 1600689.
 
22.    Yefanov O.M. and Klad'ko V.P. The solution of the dispersion equation in an explicit format for the case of two strong waves. Metallofizika i Noveishie Tekhnologii. 2006. 28, No. 2. P. 227–244 (in Russian).
 
23.    Molodkin V.B., Nizkova A.I., Shpak A.P. et al. Diffractometry of Nanodimensional Defects and Heterolayers of Crystals. Kyiv, Akademperiodyka, 2005 (in Russian).
 
24.    Souilah M., Boulle A., and Debelle A. RaDMaX: a graphical program for the determination of strain and damage profiles in irradiated crystals. J. Appl. Crystallogr. 2016. 49, No. 1. P. 311–316.
https://doi.org/10.1107/S1600576715021019
 
25.    Boulle A., Conchon F., and Guinebretière R. Strain profiles in thin films: influence of a coherently diffracting substrate and thickness fluctuations. J. Appl. Crystallogr. 2009. 42, No. 1. P. 85–92.
https://doi.org/10.1107/S0021889808036406
 
26.    Nelder J.A. and Mead R. A simplex method for function minimization. Comput. J. 1965. 7, No. 4. P. 308–313.
https://doi.org/10.1093/comjnl/7.4.308
 
27.    Hooke R. and Jeeves T.A. "Direct Search" solution of numerical and statistical problems. J. ACM. 1961. 8, No. 2. P. 212–229.
https://doi.org/10.1145/321062.321069
 
28.    Press W.H., Flannery B.P., Teukolsk S.A., and Vetterling W.T. Numerical Recipes – The Art of Scientific Computing. Cambridge University Press, 1986.
 
29.    O'Neill R., Algorithm AS 47: Function minimization using a simplex procedure. Appl. Stat. 1971. 20, No. 3. P. 338–345.
https://doi.org/10.2307/2346772
 
30.    Kaupe A.F., Algorithm 178: direct search. Commun. ACM. 1963. 6, No. 6. P. 313–314.
https://doi.org/10.1145/366604.366632