Semiconductor
Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 282-287 (2018). References
1. Shalek A.K., Robinson J.T., Karp E.S. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells.
PNAS. 2010. 107, No. 5. P. 1870–1875; https://doi.org/10.1073/pnas.0909350107.
2. Borgne B.L., Salaun A.C., Pichon L., Jolivet-Gougeon A., Martin S., Rogel R., and de Sagazan O. Silicon nanowires based resistors for bacteria detection. Proceedings. 2017. 1, No 4. P. 496. https://doi.org/10.3390/proceedings1040496.
3. Goldberger J., Hochbaum A.I., Fan R., and Yang P. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006. 6, No. 5. P. 973–977.
4. Tsakalakos L., Balch J., Fronheiser J., Korevaar B.A., Sulima O., and Rand J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007. 91. P. 233117.
5. Dupré L., Buttard D., Gentile P., Pauc N., Solanki A. High density core-shell silicon nanowire array for the realization of third generation solar cell. Energy Procedia. 2011. 10. P. 33–37.
6. Peng K., Jie J., Zhang W., and Lee S-T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008. 93. P. 033105.
7. Prosini P.P., Rufoloni A., Rondino F., and Santoni A. Silicon nanowires used as the anode of a lithium-ion battery. AIP Conference Proc. 2015. 1667. P. 020008; doi: 10.1063/1.4922564.
9. Klimovskaya A.I., Ostrovskii I.P., and Ostrovskaya A.S. Influence of growth conditions on morphology composition, and electrical properties of n-Si wires. phys. status solidi (a). 1996. 153, No 2. P. 465–472.
10. Wagner R.S. and Ellis W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964. 4, No. 89. P. 89–90.
11. Givargizov E.I. Fundamental aspects of VLS growth. J. Cryst. Growth. 1975. 31. P. 20-30.
12. Morales A.M., Lieber C.M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 1998. 279. P. 208–211.
13. Pan H., Lim S., Poh C., Sun H., Wu X., Feng Y., Lin J. Growth of Si nanowires by thermal evapora-tion. Nanotechnology. 2005. 16. P. 417–421.
14. Schubert L., Werner P., Zakharov N.D., Gerth G., Kolb F.M., Long L., Gösele U., Tan T.Y. Silicon nanowhiskers grown on 〈111〉 Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 2004. 84. P. 4968–4970.
15. Liu J.L., Cai S.J., Jin G.L., Thomas S.G. and Wang K.L. Growth of Si whiskers on Au/Si (111) substrate by gas source molecular beam epitaxy (MBE). J. Cryst. Growth. 1999. 200. P. 106–111.
16. Holmes J.D., Johnson K.P., Doty R.C., Korgel B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science. 2000. 287. P. 1471–1473.
17. Wagner R.S., Ellis W.C., Jackson K.A., and Arnold S.M. Study of the filamentary growth of silicon crystals from the vapor. J. Appl. Phys. 1964. 35, No 10. P. 2993–2301.
18. Prokes S.M. and Wang K.L. Novel methods of nanoscale wire formation. Mater. Res. Bull. 1999. 24. P. 13–36.
19. Shanina B.D., Grigor'ev N.N., Klimovskaya A.I., and Kamins T.I. Electronic structure and energies of interatomic bonds in the TiSi2 compound with a C49 crystal structure. Physics of the Solid State. 2007. 49, No 1. P. 39–45.
20. Kamins T.I. Integranion of self-assembled metal-catalyzed semiconductor nanowires for sensors and large-area electronics. IEEE Trans. Electron Devices. 2008. 55. P. 3096–3106.
21. Efremov A., Klimovskaya A., Kamins T., Shanina B., Grygorev K., Lukyanets S. Physico-chemical model and computer simulations of silicon nanowire growth. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2005. 8, No 3. P. 1–11.
22. Efremov A., Klimovskaya A., Hourlier D. The role of multicomponent surface diffusion in growth and doping of silicon nanowires. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2007. 10, No 1. P. 18–26.
|