Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 294-306 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.294


References

1. Rogalski A. Infrared detectors for the future. Acta Physica Polonica A. 2009. 116, No 3. P. 389–405.
https://doi.org/10.12693/APhysPolA.116.389

2. Downs Chandler and Vandervelde Thomas E. Progress in infrared photodetectors since 2000. Sensors (Basel). 2013. 13, No 4. P. 5054–5098.
https://doi.org/10.3390/s130405054

3. Karim Amir and Andersson Jan Y. Infrared detectors: Advances, challenges and new technologies. IOP Conf. Ser.: Mater. Sci. Eng. 2013. 51. P. 012001.

4. Hilsum C. and Rose-Innes A.C. Semiconducting III-V Compounds. New York, Macmillan (Pergamon), 1961.

5. Rode D. L. Electron transport in InSb, InAs, and InP. Phys. Rev. B. 1971. 3, No 10. P. 3287–3299.
https://doi.org/10.1103/PhysRevB.3.3287

6. Laff R.A. and Fan H.Y. Carrier lifetime in indium antimonide. Phys. Rev. 1961. 121, No 1. P. 53–62.
https://doi.org/10.1103/PhysRev.121.53

7. Wampler W.R. and Springford M. The lifetime of electrons in InSb, studied using the de Haas-van Alphen effect. J. Phys. C: Solid State Phys. 1972. 5. P. 2345–2356.
https://doi.org/10.1088/0022-3719/5/17/012

8. Zitter R.N., Strauss A.J., and Attard A.E. Recombination processes in p-type indium antimonide. Phys. Rev. 1959. 115, No 2. P. 266–273.
https://doi.org/10.1103/PhysRev.115.266

9. Pines M.Y. and Stafsudd O.M. Recombination processes on intrinsic semiconductors using impact ionization capture cross sections in Indium Antimonide and Mercury Cadmium Telluride. Infrared Phys. 1980. 20. P. 73–91.
https://doi.org/10.1016/0020-0891(80)90011-1

10. Rogalski A. and Orman Z. Band-to-band recombination in InAs1-xSbx. Infrared Phys. 1985. 25, No 3. P. 551–560.
https://doi.org/10.1016/0020-0891(85)90028-4

11. Liu P.Y. and Maan J.C. Optical properties of InSb between 300 and 700 K. I. Temperature dependence of the energy gap. Phys. Rev. B. 1993. 47. P. 16274.
https://doi.org/10.1103/PhysRevB.47.16274

12. Levinstein M., Rumyantsev S. and Shur M. Handbook Series on Semiconductor Parameters (Vol. 1). World Scientific, 1996.

13. Adachi S. Group-IV, III-V and II-VI Semiconductors. Wiley, 2005.

14. Foyt A.G., Lindley W.T., and Donnelly J.P. n-p junction photodetectors in InSb fabricated by proton bombardment. Appl. Phys. Lett. 1970. 16. P. 335.
https://doi.org/10.1063/1.1653216

15. Hurwitz C.E. and Donnelly J.P. Planar InSb photodiodes fabricated by Be and Mg ion implantation. Solid-Slate Electronics. 1975. 18. P. 753–756.
https://doi.org/10.1016/0038-1101(75)90152-5

16. Bogatyriov V.A., Kachurin G.A. and Smirnov L.S. Properties of InSb p-n junctions fabricated by Zn implantation with subsequent drive-in diffusion. Radiation Effects. 1980. 49, No 1-3. P. 45–49.
https://doi.org/10.1080/00337578008243065

17. Liu J. Rapid thermal annealing characteristics of Be implanted into InSb. Appl. Surf. Sci. 1998. 126. P. 231–234.
https://doi.org/10.1016/S0169-4332(97)00695-8

18. Goltvyanskyi Yu.V., Gudymenko O.J., Dubikovskyi O.V., Liubchenko O.I., Oberemok O.S., Sabov T.M., Sapon S.V., Chunikhina K.I. Investigation of photodiode formation processes in InSb by using beryllium ion implantation. Optoelectronics and Semiconductor Technique. 2017. 52 (in Ukrainian).

19. Abautret J., Perez J.P., Evirgen A., Rothman J., Cordat A., and Christol P. Characterization of midwave infrared InSb avalanche photodiode. J. Appl. Phys. 2015. 117. P. 244502.
https://doi.org/10.1063/1.4922977

20. Gunapala S.D., Bandara S.V., Rafol S.B., and Ting D.Z. Chapter 2 – Quantum well infrared photodetectors. Semiconductors and Semimetals. 2011. 84. P. 59–151.
https://doi.org/10.1016/B978-0-12-381337-4.00002-4

21. Liu H.C. Quantum dot infrared photodetector. Opto-Electron. Rev. 2003. 11, No 1. P. 1–5.

22. Mitin V.V., Kochelap V.A., and Stroscio M. Quantum Heterostructures for Microelectronics and Optoelectronics. Ch.​12. New York, Cambridge University Press, 1999.

23. Shadrin V.D., Mitin V., Choi K., Kochelap V.A. Photoconductive gain and generation–recombination noise in quantum-well photodetectors biased to strong electric field. J. Appl. Phys. 1995. 78, No 9. P. 5765–5774.
https://doi.org/10.1063/1.359639

24. Bonakdar A. and Mohseni H. Impact of optical antenna and plasmonics on infrared imagers. Infrared Physics & Technology. 2013. 59. P. 142–145.
https://doi.org/10.1016/j.infrared.2012.12.029

25. Rosenberg J., Shenoi R.V., Krishna S. and Painter O. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. Opt. Exp. 2010. 18, No 4. P. 3672.
https://doi.org/10.1364/OE.18.003672

26. Hopkins F.K. and Boyd J.T. Dark current analysis of InSb photodiodes. Infrared Phys. 1984. 24, No 4. P. 391–395.
https://doi.org/10.1016/0020-0891(84)90031-9

27. Tai-Ping Sun and Si-Chen Lee. The current leakage mechanism in InSb p+-n diodes. J. Appl. Phys. 1990. 67. P. 7092.
https://doi.org/10.1063/1.345059

28. BenDaniel D.J. and Duke C.B. Space-Charge Effects on Electron Tunneling. Phys. Rev. 1966. 152, No 29. P. 683–692.
https://doi.org/10.1103/PhysRev.152.683

29. Banerjee K., Huang J., and Ghosh S. Modeling and simulation of long-wave infrared InAs/GaSb strained layer superlattice photodiodes with different passivants. Infrared Phys. Technol. 2011. 54. P. 460.
https://doi.org/10.1016/j.infrared.2011.08.003

30. Nadimi M. and Sadr A. Computer modeling of MWIR homojunction photodetector based on indium antimonide. Adv. Mater. Res. 2012. 383. P. 6806.

31. Kruse P.W. Chapter 2 – Indium antimonide photoconductive and photoelectromagnetic detectors. Semiconductors and Semimetals. 1970. 5. P. 15–83.
https://doi.org/10.1016/S0080-8784(08)62813-6

32. Anselm A. Introduction to Semiconductor Theory. Moscow, Nauka, 1978 (in Russian).

33. Bonch-Bruyevich V.L. and Kalashnikov S.G. Semiconductor Physics. Moscow, Nauka, 1977 (in Russian).