Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 299-309 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.299


References

1. Adam J.L. and Zhang X. Chalcogenide Glasses: Preparation, Properties and Applications, Elsevier Science, 2014.
2. Bach H. and Krause D. Analysis of the Composition and Structure of Glass and Glass Ceramics, Springer, 1999.
https://doi.org/10.1007/978-3-662-03746-1
3. Andriesh A. and Bertolotti M. Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics, Springer, 2012.
4. Vazquez M. and Hernando A. Nanostructured and Non-Crystalline Materials, World Scientific Pub. Inc., 1995.
https://doi.org/10.1142/9789814533492
5. Thorpe M.F., Jacobs D.J., Chubynsky M.V., Phillips J.C. Self-organization in network glasses. J. Non-Cryst. Solids. 2000. 266-269. P. 859-866. https://doi.org/10.1016/S0022-3093(99)00856-X.
https://doi.org/10.1016/S0022-3093(99)00856-X
6. Scholze H. Glass. Nature, Structure and Properties. Springer, 2011.
7. Mott N.F. and Davis E.A. Electronic Processes in Non-Crystalline Materials. Oxford University Press, 2012.
8. Nicolis G. and Prigogin I. Exploring Complexity. An Introduction. Freeman, 1989.
9. Mar'yan M.I. and Yurkovych N.V. Self-organizing processes and fractal approach to the formation of non-crystalline states. Physics and Chemistry of Solid State. 2015. 16, No 3. P. 458-463. https://doi.org/10.15330/pcss.16.3.458-463
https://doi.org/10.15330/pcss.16.3.458-463
10. Haken H. and Mikhailov A. Interdisciplinary Approaches to Nonlinear Complex Systems. Springer, 2012.
11. Yurkovych N., Mar'yan M. and Seben V. Synergetics of the instability and randomness in the formation of gradient modified semiconductor structures. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No 4. P. 365-373. https://doi.org/10.15407/spqeo21.04.365.
https://doi.org/10.15407/spqeo21.04.365
12. Mar'yan M. and Yurkovych N. Self-organized Structures in Non-Crystalline Solids and other Systems: Methods, Concepts and Applications to the Information Technology. LAP Lambert Academic Publishing, 2019.
13. Mar'yan M., Seben V. and Yurkovych N. Synergetics and Fractality in Science Education. University of Presov Publishing, 2018.
14. Mar'yan M. and Yurkovych N. Fractality of the Non-Crystalline Solids and other Systems. Synergetics & Self-Organization. LAP Lambert Academic Publishing, 2018.
15. Mar'yan M.I., Szasz A., Szendro P. and Kikineshy A. Synergetic model of the formation of non-crystalline structures. J. Non-Cryst. Solids. 2005. 351, No 2. P. 189-193. https://doi.org/10.1016/j.jnoncrysol.2004.09.026.
https://doi.org/10.1016/j.jnoncrysol.2004.09.026
16. Popescu M. Self-organization in non-crystalline solids. J. Opt. Adv. Mat. 2003. 5, No 5. P. 1059-1068.
17. Svoboda R. and Malek J. Kinetic fragility of Se-based binary chalcogenide glasses. J. Non-Cryst. Solids. 2015. 419, No 1, pp. 39-44. https://doi.org/10.1016/j.jnoncrysol.2015.03.041.
https://doi.org/10.1016/j.jnoncrysol.2015.03.041
18. Shuster P. Stochasticity in Processes: Fundamentals and Applications to Chemistry and Biology. Springer, 2016.
https://doi.org/10.1007/978-3-319-39502-9
19. Frehland E. Synergetics - from Microscopic to Macroscopic Order. Springer, 2011.
20. Mar'yan M., Yurkovych N. Formation and modeling nanosized levels of the self-organized structures in the non-crystalline materials of systems As(Ge)-S(Se), Ge-As-Te. XVII Intern. Freik Conference on Physics and Technology of Thin Films and Nanosystems ICPTTFN-XVII. 2019, May 20-24. Ivano-Frankivsk, Ukraine. P. 252; Yurkovych N., Mar'yan M., Seben V. Fractality and innovative concepts of teaching natural sciences at higher educational institutions and universities. ICPTTFN-XVII. P. 361.
21. Gotze W. and Sjogren L. Scaling properties in supercooled liquid near the glass transition. J. Phys. C: Solid State Phys. 1988. 21, No 18. P. 3407-3424.
https://doi.org/10.1088/0022-3719/21/18/007
22. Bartsch E., Fujura F., Kichel M. and Sillescu H. Inelastic neutron scattering experiments on Van der Waals glasses - A test of recent microscopic theories of the glass transition. Phys. Chem. 1989. 93, No 11. P.1252-1259. https://doi.org/10.1002/bbpc.19890931121.
https://doi.org/10.1002/bbpc.19890931121
23. Franz S. and Parasi G. Effective potentials in glassy systems. Phil. Mag. B. 1998. 77, No 2. P. 239-243. https://doi.org/10.1016/S0378-4371(98)00315-X.
https://doi.org/10.1016/S0378-4371(98)00315-X
24. Desai C.F., Soni P.H., Jotania K.R. and Sureshkumar M.B. Crystalline and Non-Crystalline Solids: Preparation and Characterization. Alpha Science Int., 2014.
25. Armand P., Ibanez A., Philippot E., Ma Q. and Raoux D. Local and medium range order in germanium chalcogenide glasses. J. Non-Cryst. Solids.1992. 150, No 2, pp. 371-375. https://doi.org/10.1016/0022-3093(92)90155-D.
https://doi.org/10.1016/0022-3093(92)90155-D
26. Yurkovych N.V. and Mar'yan M.I. Dissipative structures and self-organizing processes in non-crystalline materials. Scientific Herald UzhNU. Series Physics. 2011. 29. P. 79-86. https://doi.org/10.24144/2415-8038.2013.34.40-47.
https://doi.org/10.24144/2415-8038.2013.34.40-47
27. Dembovsky S.A. Quasimolecular defects as a unified microscopic basis of the glassy state. J. Non-Cryst. Solids. 1987. 90, Issues 1-3. P. 355-362. https://doi.org/10.1016/S0022-3093(87)80444-1.
https://doi.org/10.1016/S0022-3093(87)80444-1