Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 299-309 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.299
References
1. Adam J.L. and Zhang X. Chalcogenide Glasses: Preparation, Properties and Applications, Elsevier Science, 2014. | | 2. Bach H. and Krause D. Analysis of the Composition and Structure of Glass and Glass Ceramics, Springer, 1999. https://doi.org/10.1007/978-3-662-03746-1 | | 3. Andriesh A. and Bertolotti M. Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics, Springer, 2012. | | 4. Vazquez M. and Hernando A. Nanostructured and Non-Crystalline Materials, World Scientific Pub. Inc., 1995. https://doi.org/10.1142/9789814533492 | | 5. Thorpe M.F., Jacobs D.J., Chubynsky M.V., Phillips J.C. Self-organization in network glasses. J. Non-Cryst. Solids. 2000. 266-269. P. 859-866. https://doi.org/10.1016/S0022-3093(99)00856-X. https://doi.org/10.1016/S0022-3093(99)00856-X | | 6. Scholze H. Glass. Nature, Structure and Properties. Springer, 2011. | | 7. Mott N.F. and Davis E.A. Electronic Processes in Non-Crystalline Materials. Oxford University Press, 2012. | | 8. Nicolis G. and Prigogin I. Exploring Complexity. An Introduction. Freeman, 1989. | | 9. Mar'yan M.I. and Yurkovych N.V. Self-organizing processes and fractal approach to the formation of non-crystalline states. Physics and Chemistry of Solid State. 2015. 16, No 3. P. 458-463. https://doi.org/10.15330/pcss.16.3.458-463 https://doi.org/10.15330/pcss.16.3.458-463 | | 10. Haken H. and Mikhailov A. Interdisciplinary Approaches to Nonlinear Complex Systems. Springer, 2012. | | 11. Yurkovych N., Mar'yan M. and Seben V. Synergetics of the instability and randomness in the formation of gradient modified semiconductor structures. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No 4. P. 365-373. https://doi.org/10.15407/spqeo21.04.365. https://doi.org/10.15407/spqeo21.04.365 | | 12. Mar'yan M. and Yurkovych N. Self-organized Structures in Non-Crystalline Solids and other Systems: Methods, Concepts and Applications to the Information Technology. LAP Lambert Academic Publishing, 2019. | | 13. Mar'yan M., Seben V. and Yurkovych N. Synergetics and Fractality in Science Education. University of Presov Publishing, 2018. | | 14. Mar'yan M. and Yurkovych N. Fractality of the Non-Crystalline Solids and other Systems. Synergetics & Self-Organization. LAP Lambert Academic Publishing, 2018. | | 15. Mar'yan M.I., Szasz A., Szendro P. and Kikineshy A. Synergetic model of the formation of non-crystalline structures. J. Non-Cryst. Solids. 2005. 351, No 2. P. 189-193. https://doi.org/10.1016/j.jnoncrysol.2004.09.026. https://doi.org/10.1016/j.jnoncrysol.2004.09.026 | | 16. Popescu M. Self-organization in non-crystalline solids. J. Opt. Adv. Mat. 2003. 5, No 5. P. 1059-1068. | | 17. Svoboda R. and Malek J. Kinetic fragility of Se-based binary chalcogenide glasses. J. Non-Cryst. Solids. 2015. 419, No 1, pp. 39-44. https://doi.org/10.1016/j.jnoncrysol.2015.03.041. https://doi.org/10.1016/j.jnoncrysol.2015.03.041 | | 18. Shuster P. Stochasticity in Processes: Fundamentals and Applications to Chemistry and Biology. Springer, 2016. https://doi.org/10.1007/978-3-319-39502-9 | | 19. Frehland E. Synergetics - from Microscopic to Macroscopic Order. Springer, 2011. | | 20. Mar'yan M., Yurkovych N. Formation and modeling nanosized levels of the self-organized structures in the non-crystalline materials of systems As(Ge)-S(Se), Ge-As-Te. XVII Intern. Freik Conference on Physics and Technology of Thin Films and Nanosystems ICPTTFN-XVII. 2019, May 20-24. Ivano-Frankivsk, Ukraine. P. 252; Yurkovych N., Mar'yan M., Seben V. Fractality and innovative concepts of teaching natural sciences at higher educational institutions and universities. ICPTTFN-XVII. P. 361. | | 21. Gotze W. and Sjogren L. Scaling properties in supercooled liquid near the glass transition. J. Phys. C: Solid State Phys. 1988. 21, No 18. P. 3407-3424. https://doi.org/10.1088/0022-3719/21/18/007 | | 22. Bartsch E., Fujura F., Kichel M. and Sillescu H. Inelastic neutron scattering experiments on Van der Waals glasses - A test of recent microscopic theories of the glass transition. Phys. Chem. 1989. 93, No 11. P.1252-1259. https://doi.org/10.1002/bbpc.19890931121. https://doi.org/10.1002/bbpc.19890931121 | | 23. Franz S. and Parasi G. Effective potentials in glassy systems. Phil. Mag. B. 1998. 77, No 2. P. 239-243. https://doi.org/10.1016/S0378-4371(98)00315-X. https://doi.org/10.1016/S0378-4371(98)00315-X | | 24. Desai C.F., Soni P.H., Jotania K.R. and Sureshkumar M.B. Crystalline and Non-Crystalline Solids: Preparation and Characterization. Alpha Science Int., 2014. | | 25. Armand P., Ibanez A., Philippot E., Ma Q. and Raoux D. Local and medium range order in germanium chalcogenide glasses. J. Non-Cryst. Solids.1992. 150, No 2, pp. 371-375. https://doi.org/10.1016/0022-3093(92)90155-D. https://doi.org/10.1016/0022-3093(92)90155-D | | 26. Yurkovych N.V. and Mar'yan M.I. Dissipative structures and self-organizing processes in non-crystalline materials. Scientific Herald UzhNU. Series Physics. 2011. 29. P. 79-86. https://doi.org/10.24144/2415-8038.2013.34.40-47. https://doi.org/10.24144/2415-8038.2013.34.40-47 | | 27. Dembovsky S.A. Quasimolecular defects as a unified microscopic basis of the glassy state. J. Non-Cryst. Solids. 1987. 90, Issues 1-3. P. 355-362. https://doi.org/10.1016/S0022-3093(87)80444-1. https://doi.org/10.1016/S0022-3093(87)80444-1 | |
|
|